
A Framework for Automatically Checking

Anonymity with µCRL

Tom Chothia1, Simona Orzan2,1, Jun Pang3, and Mohammad Torabi Dashti1

1 Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands
2 Technische Universiteit Eindhoven, Eindhoven, The Netherlands
3 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany

Abstract. We present a powerful and flexible method for automatically
checking anonymity in a possibilistic general-purpose process algebraic
verification toolset. We propose new definitions of a choice anonymity
degree and a player anonymity degree, to quantify the precision with
which an intruder is able to single out the true originator of a given event
or to associate the right event to a given protocol participant. We show
how these measures of anonymity can be automatically calculated from a
protocol specification in µCRL, by using a combination of dedicated tools
and existing state-of-the-art µCRL tools. To illustrate the flexibility of
our method we test the Dining Cryptographers problem and the FOO 92
voting protocol. Our definitions of anonymity provide an accurate picture
of the different ways that anonymity can break down, due for instance
to coallitions of inside intruders. Our calculations can be performed on
a cluster of machines, allowing us to check protocols for large numbers
of participants.

1 Introduction

Anonymity, as a security property, refers to the ability of a user to own some
data or take some actions without being tracked down. This property is essential
in protocols that might involve sensitive personal data, like electronic auctions,
voting, anonymous broadcasts, file-sharing etc. Due to its relevance and subtle
nature, anonymity has been given many definitions [3, 16, 17, 26] and has been
the subject of many theoretical studies and formal analysis [19, 21]. However,
automatic approaches to the formal verification of anonymity have only treated
small examples of individual protocols [10, 20, 28, 30]. We address this situation
by investigating the possibility of using a powerful general-purpose explicit-state
verification toolset, µCRL [4], to automatically verify anonymity properties. We
define two measures of anonymity and set up a framework to calculate them
from process specifications.

Our definitions of anonymity are based on a notion of secret choices for
participants. These choices may signify actions (e.g., accessing a certain web
server) or data (e.g., votes in a voting protocol). We represent a protocol as a
composition of a number of players (participants), each given a secret choice.
The two types of anonymity that we propose quantify the ability of an intruder

to deduce the right association of players and choices. Consider a voting protocol
with 50 candidates and 1000 voters. There are two types of questions that the
intruder may ask: 1) who voted for a particular candidate, for instance candidate3
and 2) what was the vote of a particular player, for instance player1 . In the
first case, a choice is fixed (candidate3) and the originator(s) of that choice are
sought, in the second case a player is fixed and determining their choice is the
object of intruder’s attention. The answers obtained are usually not precise, but
rather in the form of a set of possibilities — the smaller the set of possibilities,
the more exact the intruder’s guess and therefore the smaller the degree of
anonymity. Namely, there is a quantitative difference between the situation in
which the intruder reaches the conclusion that the vote of player1 is in the set
{candidate3, candidate49} and the situation in which the intruder considers all
50 candidates as possible choices of player1 . Based on these observations, we say
that if the intruder considers more than one secret choice possible for a given
player then the player has choice anonymity and the number of possible choices
for the player is the choice anonymity degree. In a similar fashion, if the intruder
considers more than one player as a possible owner of a given secret choice then
that choice has player anonymity and the number of possible players for the
choice is the player anonymity degree.

Our definitions allow for corrupted players that will share their information
with the intruder. This means that we can measure the effect of coalitions of cor-
rupted players and the intruder on the anonymity of honest players. We formally
define these metrics in terms of bisimulation between processes and provide tool
support to compute them automatically, starting from an abstract description of
the protocol in the process-algebraic language µCRL. Trace equivalence has also
been proposed as an equivalence for checking anonymity [22, 28]. Bisimulation
is a more discriminating relation than trace equivalence; while it is possible that
we will detect false positives, these are better than the possible false negatives.
Bisimulation also has the advantage of being more efficient to compute than
trace equivalence [18].

We specify the protocols we wish to check in µCRL. This is an expressive
language that comes with an extensive toolset and has a long history of successful
protocol checking [5, 25]. The µCRL toolset includes tools for performing state
space reduction modulo bisimulation [6], which we use along with some purpose-
built scripts and C programs to generate all possible cases of the model and to
calculate our measures of anonymity. The µCRL toolset allows us to distribute
the checking over a cluster of machines. Unlike other approaches, we support
automatic generation of µCRL models for any given number of participants and
any given coalition of corrupt participants.

Our verification approach is possibilistic, rather than probabilistic, i.e., we
consider two processes the same if there is the possibility of them performing
the same actions. We do not take into account the probability of the actions
occurring. While the possibilistic approach may still allow the intruder to make
a good guess at the identity of a guilty player, the metrics are much easier

to calculate and it avoids the problem of combining probabilities with non-
deterministic choices, such as how often a given player will use the system.

We illustrate our approach by two examples: the Dining Cryptographers
problem [7] and the FOO voting protocol [13]. These systems have already
been analysed with formal methods, but not within one framework. The Dining
Cryptographers problem has been used as a test case for many tools; the largest
protocol instance that has been verified, to the best of our knowledge, contains 8
participants, by using symbolic model checking on an epistemic specification [20].
Our approach can check more than 15 cryptographers in a few hours. In contrast,
the FOO voting protocol has not previously been checked in a fully automated
framework.

The contribution of this paper is threefold: 1) a framework for checking
anonymity including the definitions of choice anonymity degree and player anony-
mity degree, with a treatment of coalitions of corrupt players, 2) demonstrating
the flexibility of this framework by testing examples of two well known anony-
mous systems, 3) demonstrating the power of this framework by showing how
we can automatically check the anonymity degrees of our examples on a single
machine or on a cluster.

The structure of the paper We discuss related work in the rest of this section.
In Section 2, we define two notions of anonymity degrees, and we present our
verification framework. We apply our approach to the analysis of two exam-
ples in Sections 3 and 4. The results of the experiments are gathered together
in Section 5. Finally, Section 6 concludes the paper and discusses possible fu-
ture extensions. The code for the examples and the scripts for calculating the
anonymity degrees are available online [9].

Related work Using process equivalences to model anonymity dates back to
Meritt [23], whose work was inspired by information flow analysis. Chaum [7]
uses the size of an anonymity set to indicate the degree of anonymity provided
by a network based on Dining Cryptographers (DC nets). An anonymity set is
defined as the set of participants who could have sent a particular message as
observed by the intruder. Pfitzmann and Hansen [26] investigate a similar idea.
Berthold, Pfiztmann and Standtke [2] define the degree of anonymity as ln(N),
where N is the number of users of the protocols. Our metrics can be thought of
as the anonymity set for players and the anonymity set for choices, defined via
a behavioural equivalence.

Reiter and Rubin [27] define the degree of anonymity as the probability that
an intruder can assign to a player of being the original sender of a message.
This metric does not take into account the number of players in a system. Bhar-
gava and Palamidessi [3] propose a similar definition of anonymity that makes
a careful distinction between non-deterministic and probabilistic actions. Deng,
Palamidessi and Pang [10] define “weak probabilistic anonymity” and use a prob-
abilistic model checker (PRISM) to analyse the Dining Cryptographers problem.
Serjantov and Danezis [29] define an information theoretic anonymity metric

based entropy and Dı́az et al. [11] provide a similar metric that is normalised by
the number of users.

The FOO voting protocol has been analysed by Kremer and Ryan in the
applied pi-calculus [19] and Chothia [8] uses bisimulation to test the anonymity
of an anonymous file-sharing system. Also on the possibilistic side, Schneider
and Sidiropoulos [28] use FDR to check anonymity via trace equivalence in CSP,
and Garcia et al. [14] develop a formal framework for proving anonymity based
on epistemic logic.

2 Anonymity formalisation and verification methodology

Anonymity as a security property comes in many flavours. We take the rather
general view that when participants in a protocol wish to remain anonymous they
wish to hide parts of their behaviour and data. That is, an intruder should not be
able to find out what choices, regarding control as well as data, that particular
participant has made. We consider the environment as an active attacker that
observes protocol runs, hence we need not model the intruder explicitly. We
also consider the possibility of a number of corrupt insiders that may leak their
observations to the attacker.

The protocol model Group protocols can usually be written as a parallel
composition of participants and an environment process:

Protocol(x) = P1(x1)‖P2(x2)‖ . . . ‖Pn(xn)‖Q(n) (1)

Here x = (x1, x2, . . . , xn) is the vector of secret choices (e.g., votes in a voting
protocol). The choice xi comes from a known domain and the anonymity refers
to the link between this value and the identity of the participant using it. Each
Pi (1 ≤ i ≤ n) describes the behaviour of a single player. Process Q(n) represents
the environment, made up from entities that ‘oversee’ the protocol and, by the
nature of their role, do not need to be anonymous. Examples of such entities
are the auction house in an auction protocol, or the ballot counter in a voting
protocol. In this paper, P1, . . . , Pn, Q are models written in the process-algebraic
specification language µCRL, a short description of which is given later in this
section.

The possible behaviours in our model are grouped in three levels:

1. A choice defines the behaviour of a single player. In the Dining Cryptogra-
phers protocol, for instance, the possible choices are T, to indicate that a
player is the payer, and F, to indicate that the player is not going to pay.

2. A choice vector is an ordered list of choices. It defines one behaviour of
the entire system. The vector’s ith element defines the behaviour of the ith
player.

3. A choice vector set is a set of choice vectors that represent all possible be-
haviours of a system.

A short introduction to µCRL The specification language µCRL [15] is an
extension of the process algebra ACP [1] with abstract data types, which are very
handy when describing real-life applications. Processes are built from atomic ac-
tions by the ACP operators for sequential composition (.), non-deterministic
choice (+) and parallel compositions (‖). Synchronisation in ACP is governed
by a communication function γ. E.g., synchronisation of actions a and b yields
the action γ(a, b). There is also an encapsulation operator ∂H , that forces pro-
cesses to communicate, by making the actions in the set H act exclusively in
communication. The hiding operator τI turns all occurrences of actions from
the set I into the internal action τ . The renaming operator ρR renames actions
according to the renaming rules in R. In fact, the precise form of Equation 1 in
µCRL is

Protocol(x) = τIρR∂H(P1(x1)‖P2(x2)‖ . . . ‖Pn(xn)‖Q(n)) (2)

There are two special actions: δ represents deadlock, and τ the internal ac-
tion. In order to incorporate abstract data types in a specification, a signature of
multiple sorts and functions can be declared, and axiomatised by equations. A
number of connectives tie processes up with abstract data types. First, atomic ac-
tions can be parameterised with data elements, as in send(x). Then,

∑

x:D P (x)
denotes alternative (possibly infinite) choice over data domain D, i.e. for any
value x0 ∈ D, the process can behave as P (x0). Finally, if b is a term of data
domain Bool and p and q are processes, then the conditional construct p ⊳ b ⊲ q

is the process ‘p if b, else q’.

Groups of corrupted players Since it is not uncommon that the intruder
manages to persuade or blackmail some of the participants into revealing their
secrets, our models take into account the presence of groups of corrupted players.
We use Obs to denote the set of observer that join forces with an external
intruder. Protocol(x) specifies the behaviour of a protocol under the assumption
that all participants are honest, i.e. Obs = ∅. If Obs 6= ∅, it means that the
intruder has access to some extra inside information, namely all the secret choices
and hidden actions of the players in Obs. Therefore, in order to obtain the
behaviour corresponding to this situation, we need to cancel the effect of the
action hiding and renaming applied to processes in Obs. The resulting process
is denoted by ProtocolObs(x),

ProtocolObs(x) = τ(I/AO)ρ(R/AO)∂H(P1(x1)‖P2(x2)‖ . . . ‖Pn(xn)‖Q(n)) (3)

where AO are the actions observed by the members of Obs. We note that,
Protocol∅(x) = Protocol(x).

Anonymity formalisation We distinguish two ways to look at anonymity
requirements, in a protocol specified as above, both are in terms of participants
with secret choices: (1) for a given participant P , can the intruder find out its

secret choice, as in “for whom did P vote?”, and (2) for a given choice c, can the
intruder find out which of the participants owns it, namely “who voted for c?”.
Following the same two-fold view, we define anonymity notions that are sensitive
to quantitative nuances: (1) given a participant P , how many possibilities for the
participant’s secret choice will the intruder consider, and (2) given a secret choice
c, how many participants will the intruder consider as possibly having taken that
secret choice? These notions can be thought of as defining the anonymity degree
for players in terms of choices (cad) and the anonymity degree for choices in
terms of players (pad).

The equivalence used in the verification of anonymity models the observation
power of the intruder. Our definitions of anonymity degree can use any equiva-
lence relation; in our case studies we use bisimulation (≈) to equate process. In
particular we use branching bisimulation when we are modelling processes with
hidden actions and for efficiency we use strong bisimulation when there are no
hidden actions. This is in contrast to some previous work on anonymity that used
trace equivalence [22, 28]. While it is often possible, in an asynchronous setting,
to implement processes in such a way that an intruder cannot tell the difference
between two processes that are trace equivalent but not bisimilar, there also
exist reasonable implementations in which the intruder can tell the difference.
For instance, the two processes a.(b + c) and a.b + a.c are trace equivalent but
not bisimilar. A reasonable implementation of these processes might use sockets
for communication, in which case the first process would listen on port “a” for a
message and then listen on ports “b” and “c” and accept only the first message
that arrives. The second process could be implemented by either listening on
port “a” and then port “b” or listening on port “a” and then port “c”. All an
intruder has to do to tell these processes apart is to send on port “a” and then
on port “b”. If the intruder then gets a message sent to port “b” rejected they
may conclude that they are dealing with the second process. In this sense, using
bisimulation rather than trace equivalence is a conservative decision; while it is
possible for processes that are trace equivalent, but not bisimilar, to be safe, we
cannot guarantee that they do not reveal information to the intruder.

A second advantage of using bisimulation is that it can be much more efficient
to check. The added restrictions on bisimilar processes mean that we can reject
certain paths as not bisimilar long before we could detect that they are not trace
equivalent. In the most extreme cases checking a particular pair of processes for
trace equivalence can take exponential time while checking the same processes
for bi-simulation can take linear time.

Definition 1 (choice indistinguishability). Let Protocol be the specifica-
tion of a protocol, v1 and v2 two choice vectors, and Obs an observer set.
The set of all possible choice vector is denoted by CVS. Then the relation ≈Obs

: CVS × CVS is defined as:

v1 ≈Obs v2 iff ProtocolObs(v1) ≈ ProtocolObs(v2).

Definition 2 (choice anonymity degree). The choice anonymity degree (cad)
of participant i w.r.t. an observer set Obs under the choice vector x is:

cadx(i) = |{c ∈ Choices,∃v ∈ CVS such that
vi = c and v ≈Obs x and (∀j ∈ Obs.vj = xj)}|

where |·| denotes the cardinality of a set, Choices is the set of all possible choices,
CVS is the choice vector set, v = 〈v1, . . . , vn〉 and x = 〈x1, . . . , xn〉. We define
the choice anonymity degree of participant i w.r.t. Obs as

cad(i) = min
x∈CVS

cadx(i)

The set in the above formula for cadx(i) is the set of all choices c that could
be assigned to player i, as part of a choice vector v that is indistinguishable
from a fixed choice vector x. The “∃v ∈ CVS” and “vi = c” conditions ensure
that v is a choice vector which assigns choice c to player i. The choice vector
x can be thought of as defining the observable behaviour of a particular run of
the protocol and the choice vector v defines the observable behaviour of another
run, which the observers represented by Obs, cannot distinguish from the x-run.
We look for a value of x that gives the smallest possible number of choices, i.e.,
we are looking for the worst case anonymity. Our measure of choice anonymity
degree for player i is then the size of the set of possible choices that player i

may have been assigned. The condition ∀j ∈ Obs.vj = xj captures the fact that
the choice for Obs is fixed. This is because the players in Obs share their choice
values with the attacker.

Definition 3 (player anonymity degree). The player anonymity degree (pad)
of secret choice c, in a protocol with n players, w.r.t. an observer set Obs and
the choice vector x is:

padx(c) = |{i ∈ {1, . . . , n} \ Obs,∃v ∈ CVS such that
vi = c and v ≈Obs x and (∀j ∈ Obs.vj = xj)}|.

The player anonymity degree of secret choice c w.r.t. an observer set Obs is

pad(c) =







0, if max
x∈CVS

padx(c) = 0

min
x∈CVS:pad

x
(c)>0

padx(c), otherwise

The set in the definition of padx is the set of all honest players that might,
from the perspective of the intruder, have been assigned the choice c. We define
the pad(c) to be the lowest non-zero value assuming that such a value exists. This
is because, in some systems, it is possible for a given choice vector to rule out
certain choices values, so making the minimum pad value zero, while at the same
time any choice vector that allows the choice to happen may allow the choice to
be assigned to a number of different players. For instance, if the intruder can see
the total number of messages sent then a choice c that results in four messages
being sent rules out a choice vector that would only send three messages. So
pad(c) defines the anonymity for a choice c that results from only considering
choice vectors that are compatible with c.

st
ar
t(1

02
2)

st
ar
t(

21
02

)
s
t
a
r
t
(1

31
0)

s
t
a
r
t
(2

1
2
0
)

s
t
a
r
t(1021)

start(3010)

start(1111)

st
ar
t(1

02
2)

st
ar
t(

21
02

)

st
ar
t(

13
10

)

s
t
a
r
t(2120)

s
t
a
r
t(1021)

start(3010)

start(1111)

State space reduction modulo
a behavioral equivalence

1 3 1 0
2 1 0 2
1 0 2 2

2 1 2 0

1 0 2 1
3 0 1 0

1 1 1 1

player: 1 2 3 4

Equivalence classes

cad2102(2) = 3/4
cad1021(2) = 1/4
cad1111(2) = 1/4
cad(2) = 1/4

pad(0) = 2/4
pad1111(0) = 0/4

Computing cad for player 2:

Computing pad for choice 0:
pad2102(0) = 3/4
pad1021(0) = 2/4

Fig. 1. Left: Computing the equivalence classes of ≈Obs, for a ProtocolObs. The
choices come from the set {0, 1, 2, 3}, there are 4 players and CVS is the set
{1022, 2102, 1310, 2120, 1021, 3010, 1111}. The end state of every start(x) transition
is the start state of ProtocolObs(x). After reduction modulo ≈Obs, the transition
start(x) and start(y) have the same end state iff x ≈Obs y. The equivalence classes
of ≈Obs, listed on the right, are generated in this way. Right: Extracting cad and pad

information from the equivalence classes, by just applying the definitions.

We believe that these measures give a good impression of the anonymity
provided by a protocol. In the rest of the paper, we will write cad and pad

together with the actual number of possible choices (i.e., |Choices|) and with
the number of players (n), respectively. For instance, we will write cad(2) = 3:5
instead of cad(2) = 3, if 5 is the size of the choices’ domain. Note that the
maximum possible cad or pad are not always of the form m:m; in fact, this is
never the case whenever we consider Obs 6= ∅, since the intruder knows whether
those participants belonging to Obs have performed a certain action and what
choices those participants have made.

Verification method Our goal is to make verification of anonymity properties
just as easy as verification of safety or liveness properties. Two difficulties have
to be overcome. Firstly, anonymity depends on the point of view of the intruder,
therefore new protocol models should be written for every new observer set.
Secondly, anonymity is not a properity of a single trace that can be written as a
logic formula to be verified via model checking, but requires equivalence checking
of several protocol instances. Note that both of these problems are specific to
the general verification method of writing process specifications and then model
checking temporal properties on the generated behaviour model. For instance,
approaches based on epistemic logics [12, 24] are able to express anonymity more
naturally and do allow its verification by model checking, but they encounter
other, mainly modelling, problems and are not supported by such powerful tools
as we use here.

We solve these problems by automating the generation of new protocol spec-
ifications depending on the observer set and on the different protocol instances.
We also support the analysis of anonymity as described above, by automatically
generating the equivalence classes of ≈Obs and computing the anonymity degrees
cad and pad.

All the tool support is available on our website [9]. We start from a base
specification Protocol(x) describing the behaviour of the protocol for a param-
eter choice vector x. Then a .rn file will define, for a generic participant, how
its actions are seen from the outside. We choose to implement ρR from (2) like
this, rather than explicitly using it in the µCRL specification, in order to better
control the effects of having a set of corrupted players Obs. The renaming is done
by means of rules like assign(i,x,true)->assign(i). This example rule says
that the action of i of assigning a true value to its variable x will be observed
by the other players and the environment only as an assignment executed by i.
Just like the modelling process itself, choosing what the appropriate renamings
should be is a subjective task. The actions executed by the observing parties
are not renamed, while from the actions executed by the other, honest parties,
all private information should be hidden. All information for action renaming
are gathered into one .rn file, which will be used to automatically generate re-
namings for particular protocol instances. In order to avoid interferences with
this automatically generated renamings, we require the Pi processes to not con-
tain any further renaming operators. Then the tools will generate, for this given
µCRL model Protocol(x), the given set of renaming rules, a given set Obs and
a given choice vector set CVS, the µCRL specification corresponding to

∑

v∈CVS:∀j∈Obs.vj=xj
start(v).ProtocolObs(v),

namely the sum of all protocol instances corresponding to choice vectors which
are in CVS and coincide with x on the Obs positions. After that, the µCRL
toolset is used to generate the state space of this new process and reduce it
modulo a behavioural equivalence. The end states of the start actions are the
start states of the protocol instances compared, therefore the equivalence classes
of these states are exactly the equivalence classes of the relation ≈Obs on choice
vectors (from Definition 1). See also Figure 1 for a scheme of this procedure.
Our tools will show these equivalence classes and extract the choice and player
anonymity degrees according to Definitions 2 and 3.

In Sections 3 and 4, we will apply our approach to the analysis of the Din-
ing Cryptographers problem and the FOO 92 voting protocol, respectively. Our
method can also be used to check the anonymity that protocols provide over a
number of rounds, by using choices that represent the behaviour of a participant
over a number of rounds. We have tested a simple possibilistic version of Reiter
and Rabin’s Crowds protocol [27] and shown that, over a number of rounds,
an external observer cannot work out which nodes have originated messages,
and the observer cannot work out how many of the messages were sent by the
same node. Due to page limit, we omit the detailed analysis here. The interested
readers can find the µCRL specification of this example online [9].

3 The Dining Cryptographers problem

The Dining Cryptographers protocol is probably the most well-known example
of a protocol where anonymity is the main requirement [7]. The story, which
is a metaphor for anonymous broadcast, starts with three cryptographers sit-
ting down at a table to have dinner together. At the end of their meal, they
learn that the bill has been paid anonymously by one of them, or perhaps by a
shadowy government organisation (the National Security Agency). They respect
each other’s right to anonymity, but they wish to find out whether the payer
was the NSA or not. To achieve this, they come up with the following protocol:
each neighbouring pair of cryptographers generates a shared bit, by flipping a
coin; then each cryptographer computes the exclusive or (XOR) of the two bits
shared with the neighbours, then announces the result - or the opposite result,
if that cryptographer was the payer. The XOR of the three publicly announced
results indicates whether the payer was an insider or the NSA.

The µCRL model We specify the behaviour of a cryptographer as a µCRL
process Crypt and the behaviour of the whole Dining Cryptographers system
as a parallel composition of Crypts. With three participants, the global process
looks like this:

DC(x:ChoiceVector) = ∂{tell,recv}(Crypt0(x0)||Crypt1(x1)||Crypt2(x2))

A choice is in this case the decision to pay or not (we will call it the paying bit),
represented by the Boolean values xi ∈ {T, F}. A cryptographer process executes
a series of actions corresponding to the three main steps of the protocol: decide
whether to pay or not, flip the coins together with the neighbours, and announce
the result of XOR-ing the two coins and the own paying bit. The first step is
modelled as a statement pay(n, i, xi). In other models of this protocol [28, 3], the
shared coins are represented by separate processes, but we merge the behaviour
of ith coin with the behaviour of the ith cryptographer, in order to keep the
number of processes small. That is, process Crypti will execute a flip action
and then share the result with the right hand neighbour, by executing an action
tell while its right hand cryptographer in the ring can get to know the result
of this coin flipping by executing the action recv. The synchronisation of these
two actions results into the communication action com.

Crypti(xi : Bool) = pay(n, i, xi).
P

coin left:Bool
(flip(i, coin left).

(tell(next(i), coin left) ‖
P

coin right:Bool
recv(i, coin right)).

CryptAnnounce(n, 0, id, ch ⊕ coin right ⊕ coin left))

CryptAnnounce models broadcasting the result of one’s computation and receiv-
ing the results from all the others. Since the broadcast implementation is not an
actual part of the protocol, we do not discuss CryptAnnounce here. The renaming
rules specifying how much of a cryptographer’s actions is visible for another cryp-
tographer or the intruder are {com(i, X)− > com(i), pay(n, i, X)− > pay(i)}. For
any given observers set Obs, DCObs will be obtained from the model of DC

above, by applying the renaming rules to all Crypti processes which are not in
Obs, as explained in Section 2 (verification method).

Anonymity verification Consider an external intruder observing a run of the
Dining Cryptographers protocol with 3 participants and trying to conclude who
the payer was (in case one of the cryptographers paid). Let us suppose that
cryptographer 0 is the payer and let us check whether their anonymity will not
be broken. For this, as described in Section 2, we automatically generate the
state space corresponding to

∑

v∈CVS start(v).DC∅(v), where CVS is in this
case Π(TFF), the set of permutations of the sequence TFF, since it is a publicly
known fact that there is exactly one payer among the cryptographers. Therefore,
the above expression becomes start(TFF).DC∅(TFF) + start(FTF).DC∅(FTF) +
start(FFT).DC∅(FFT). Note that we exclude FFF from CVS, because there is no
anonymity claim for this case. The obtained state space will then be reduced
modulo strong bisimulation equivalence and one equivalence class will result:
{FFT, FTF, TFF}, meaning that the intruder cannot distinguish between the three
possible choice vectors and thus considers that any of the three cryptographers
might have been the payer. This situation of maximum anonymity is reflected
both by the pad measure pad(T) = 3:3, and the cad measure cad(0) = 2:2; the
first one says that any of the three players might be the owner of the T paying
bit, and the second says that any of the two values T, F might have been assigned
to cryptographer 0.

For 5 participants, two of which are corrupted (1 and 3), the state space
for

∑

v∈Π(TFFFF):v1=v3=F
start(v).DC{1,3}(TFFFF) will automatically be gener-

ated and reduced, resulting into the equivalence classes {FFFFT,TFFFF} {FFTFF}.
Note that, consistent with the verification method explained in the end of Sec-
tion 2, the vectors FTFFF and FFFTF are automatically excluded from this check,
since it is already known to the intruder that these cannot be the case (because 1
and 3 show their secret paying bit F to the intruder). The computed anonymity
degree pad(T) = 1:5, indicating that in at least one of the scenarios, the payer
becomes known to the intruder (namely, when the choice vector is FFTFF). The
anonymity degree restricted to the case when 0 pays padTFFFF(T) = 2:5, which
is much lower than in the case of no corrupted players, indicating that, even if
anonymity of 0 is not broken, the set of suspects is reduced to 2 players. The
cad and pad degrees give the complete picture of the anonymity of the 3 honest
cryptographers {0, 2, 4} with respect to the coalition {1, 3} of dishonest cryptog-
raphers, when cryptographer 0 pays. The conclusion is that 0 remains partially
anonymous, that is the intruder doesn’t know that 0 paid, but does know that
one of {0, 4} paid and 2 didn’t.

4 The FOO 92 electronic voting protocol

In this section, we analyse a more complex protocol, that involves choices (votes)
from a larger than binary domain and elaborated cryptographic mechanisms like
anonymous channels, encryption and blind signatures. These mechanisms are
very naturally expressible with the abstract datatypes of µCRL.

FOO involves voters, an administrator and a collector and has four stages:
registration, voting, opening and counting. During the registration stage, a voter

idi prepares his ballot as follows: (1) he chooses a vote vi and creates the ballot
xi = ξ(vi, ki) using the secure bit-commitment ξ and the randomly chosen key
ki; (2) he computes the message ei = χ(xi, ri) using the blinding technique χ

and a random blinding factor ri; (3) he signs si = σi(ei) and sends (idi, ei, si)
to the administrator , who signs it di = σA(ei) and sends it back to the voter as
his certification, if the voter is authorised to vote, otherwise the administrator
rejects the signature. In the end of the registration stage, the administrator
gets to know the number of eligible voters, and publishes the list of (idi, ei, si).
During the voting stage, a voter idi will perform the following steps: (1) he
receives di and obtains the desired signature yi of the ballot xi using the un-
blinding technique yi = δ(di, ri); (2) if yi is not the administrator’s signature
of xi, he claims that (xi, yi) is not valid; otherwise (3) he sends (xi, yi) to the
collector using an anonymous communication channel. The collector receives
(xi, yi) and verifies the signature yi of xi using the administrator’s verification
key. If this succeeds, the collector enters (ℓ, xi, yi) onto a list as the ℓ-th item.
After all voters have voted, the collector publishes the list. During the opening
stage, each voter will send the key ki and the number ℓ to the collector using
an anonymous communication channel, if his vote is on the list, Otherwise, he
claims this by revealing the valid ballot xi and its signature yi. Finally, during
the counting stage, the collector opens the ballot xi, obtains the vote vi using
ki, counts the votes, and publishes the voting result.

The µCRL model As in the case of the Dining Cryptographers problem,
we will present the µCRL model of FOO at a rather abstract level and only
give details on the interesting modelling points. The complete specification is
available online [9].

We chose to model the clear and encrypted votes, as well as clear or blinded
or signed ballots by one data type: Data, with the extension to lists DataList .
The votes come from a set V ⊆ Data of size N . We model bit commitment using
classical symmetric-key encryption and we use the voter’s index i to model both
key ki and the blinding factor ri. This does not introduce problems, since we
encode the various laws and restrictions corresponding to ki, ri as equations
that the functions using them: commit , open, blind , unblind have to satisfy. For
instance, the cancelling property of the signing procedure is captured by the
equation unblind(i, sign(blind(j, x))) = if eq(i, j) then sign(x) else err.

Each voter, the administrator and the collector are modelled as parallel pro-
cesses communicating by pairs of synchronising actions like (VfromA, AfromV).
The administrator waits for blinded ballots from the voters, signs them using the
function sign and sends them back. We assume that checks by the administrator
in the registration stage are always successful.

Admin =
P

i:Nat

P

m:Data AfromV(i, m).AtoV(i, sign(m)).Admin

A voter builds the ballot xi = commit(vi, i), blinds it as ei = blind(xi, i), and
sends (i, ei) to the administrator. Then he receives a signed ballot m from the
administrator, retrieves the desired signature of his ballot using unblind(idi,m)

and sends xi with the signature to the collector. Then the voter waits for the
collector to publish the final list and finally sends ki (i.e. i) to the collector.

Voter i(vi : Data) =
Vdecided(vi).VtoA(i, blind(i, commit(i, vi))).

P

m:Data VfromA(i, m).(VtoC(commit(i, vi), unblind(i, m)).
P

ℓ:DataList VfromClist(ℓ).VtoC(find(ℓ, unblind(i, m)), i).δ
� issigned(unblind(i, m)) � δ)

Note that the construct
∑

d:D P (d)� f(d)� δ, with f being a Boolean function
of d, forces choosing only the values of d that satisfy f . We model the collector
with the knowledge of the number n of voters. The action NVoters(n), below,
indicates the end of the registration stage. He receives the committed votes as
(xi, yi), adds them into a list ℓ and stops receiving when the counter ncv reaches
n. Then he publishes ℓ by sending it (CtoVlist) to all voters. After receiving ki

for each item in the list ℓ, he opens the vote vi and publishes the voting result
by the actions numberof(v) (v ∈ V).

Collector =
P

n:Nat
NVoters(n).Collecting([], n, 0)

Collecting(ℓ : DataList , n : Nat, ncv : Nat) =
P

xi:Data

P

yi:Data CfromV(xi, yi).Collecting(add(xi, yi, ℓ), n, ncv + 1)

� ncv < n ∧ issigned(yi) � δ + Opening(ℓ, n, 0) � ncv > n � δ

Opening(ℓ : DataList , n : Nat, nv : Nat) =
CtoVlist.Opening(ℓ, n, nv + 1) � nv < n � Opening2 (ℓ, n, 0)

Opening2 (ℓ : DataList , n : Nat, nv : Nat) =
P

label:Nat

P

ki:Nat
CfromV(label , ki).Opening2 (openvote(ℓ, label , ki), n, nv + 1)

� nv < n � Counting(ℓ, 0)
Counting(ℓ : DataList , v : Nat) =

numberof(v, count(ℓ, v)).Counting(ℓ, next(v)) � v ∈ V � δ.

The collector waiting for all n ballots before publishing ℓ is essential for the
correctness of the protocol. As noted in [19], the anonymity is broken if the
collector were allowed to publish ℓ and continue interacting with the voters before
actually having completed collecting all ballots. (In [19], the problem is addressed
by introducing synchronisation points between voters after the registration stage.
This is equivalent to forcing the collector to wait, because the voters cannot
continue without the cooperation of the collector.) We reproduced this problem
by modelling a bad collector, which does not wait (see the file voting.mcrl

at [9]), but we do not insist on this modelling detail here, since our goal is rather
to illustrate the anonymity measures on a correct model of the FOO protocol.

Anonymity verification Let V be the set of possible votes. Then CVS, the
allowed set of choice vectors, which is in fact the allowed set of vote outcomes, will
be V n. Note that since the outcomes become public in the end of the protocol,
and thus known to the intruder, the equivalence classes of ≈Obs will be subclasses
of the permutation equivalence relation. Note also that for an external observer,
cad(i) = 1:n, because a choice vector for a unanimous election leaves no doubt
as to how anyone voted. So, for this protocol, it is more informative to look
at particular instances of choice vectors (x) and evaluate cadx(v) and padx(i).

In the bottom table of Figure 2, a number of experiments are shown, involving
various numbers of voters and various vote vectors. The votes are taken from
the set {0, 1, 2}.

In the Dining Cryptographers problem, the question was “who pays?”, trans-
lated to “which of the players has the choice T?”; padTFF(T) was in that case
the appropriate anonymity measure, since it indicates the number of players
(worst case: 1) who, according to the intruder, might possibly be associated
with the choice T. In voting protocols however it is more relevant how many
different votes the intruder might associate to a given voter, so cad(voter) is
a more realistic measure of anonymity. It is possible to get padx(v) > 1 and
cadx(i) = 1, for a voter i who voted v; this indicates that player anonymity is
not a sensitive enough measure, while choice anonymity detects that the intruder
precisely knows which candidate voter i chose. This situation is illustrated by
x = 1121,Obs = {2}, i = 0, v = 1.

5 Experiences with the distributed toolset

In order to assess the efficiency of our approach, we ran some experiments with
both examples, various number of players and various coalition sizes. We gener-
ated and reduced the state spaces both with the sequential and the distributed
tools. For the latter, a cluster with 16 machines (32 processors) was used.

Our initial DC specification gives a very realistic model of the protocol, allow-
ing maximal action interleaving and including a handshake implementation of
the final broadcast announcements. Unfortunately, this leads to a fast explosion
of the state space, limiting the number of cryptographers that can be handled to
10. Note however, that this is already a larger instance than ever been formally
analysed before; Schneider and Sidiropoulos [28] analyse four players, and the
maximum we could find in the literature was 8, by means of symbolic epistemic
model checking [20]. In order to deal with even larger instances in our explicit
tool, we also experimented with a simpler DC model, where an order is imposed
on the cryptographers’ actions, and a synchronisation of all cryptographers takes
place between the three protocol phases (flipping the coins, sharing the coins,
broadcasting the XOR results). This requires some more computing effort during
generation (and thus more time), but the state spaces resulted are much smaller,
and therefore verification of instances with 17 players and more can be achieved.
This simplified version occurs in Figure 2 as DCso.

Note also that using the distributed tool is not always more efficient. For small
state spaces like DC11so, communication between the machines consuming much
of the overall time and therefore the sequential tool actually performs better.

6 Conclusions

Whether a protocol satisfies an anonymity requirement depends not only on
the protocol itself, but also on the particular scenarios in which the protocol
is used. Namely, there are two influential factors: the strength of the intruder

Size Size after red. Time cad(0) pad(T)

DC3, Obs = ∅ 229
469

65
112

1.5s 2:2 3:3

DC3, Obs = {1} 184
362

71
132

1.3s 2:2 2:3

DC5, Obs = {1, 3} 5189
14679

1620
4567

4.9s 2:2 2:5

DC7, Obs = ∅ 185 769
695 551

27 180
85 763

8m53s 2:2 7:7

DC9, Obs = ∅ 5 194 659
22 961 789

1 034 142
4 088 977

(s) -
(db) 7h5m

2:2 9:9

DC10, Obs = ∅ 27 436 022
130 031 220

5 002 490
21 535 547

(db) 17h20m 2:2 10:10

DC11so, Obs = ∅ 33 876
41 035

6 156
7 188

(s) 6m
(db) 11m

2:2 11:11

DC12so,
Obs = {1, 3, 5, 7, 9, 11}

58 749
67 612

17 467
21 219

(s) 7m 1:2 1:12

DC15so, Obs = ∅ 606 388
721 067

98 320
114 716

(s) 7h2m
(db) 44m

2:2 15:15

DC17so, Obs = ∅ 2 556 144
3 014 887

393 234
458 784

(s) -
(db) 5h40m

2:2 17:17

Size Size after red. Time cad pad

FOO4, Obs = {2} 58 749
67 612

17 467
21 219

17s cad1121(0) = 1:3 pad
1121

(1) = 3:4

FOO6, Obs = {2} 3 423 841
10 518 810

29 451
92 835

22m36s cad010102(0) = 3:3 pad
010102

(1) = 5:6

FOO7, Obs = {2} 65 282 690
221 299 564

3 676 249
9 628 686

(db) 4h48m cad0101022(0) = 3:3 pad
0101022

(1) = 6:7

Fig. 2. Experiments with various protocol and coalition instances. The sizes are given as pairs (no.
states, no. transitions). The times include both state space generation and reduction. (db) marks that
the distributed toolset was used. (s) - marks that on a single-machine, the state-space generation
ran out of memory or didn’t stop within 10 hours. For the FOO experiments, votes are taken from
the set {0, 1, 2}.

(that is, if/how many participants it has corrupted) and the exact data or ac-
tions that need to be protected (in DC, if the NSA pays, the intruder learns
that no cryptographer paid; in voting protocols, if the vote is unanimous, there
is obviously no choice anonymity). We captured these observations into two def-
initions of anonymity degrees, parameterised with the aforementioned factors.
Player anonymity measures the number of participants that the intruder might
consider guilty for a given event, and choice anonymity measures the number of
different pieces of data or events that the intruder might consider as belonging
to or being generated by a given participant. We have built tool support for tai-
loring generic protocol specifications to particular instantiations and coalitions
of corrupted participants.

We demonstrated the use of a modern powerful verification toolset, µCRL,
to automatically check the anonymity of the generated models. Due to the dis-
tributed state space generation and reduction tools, we were able to analyse
large instances of known protocols.

Our definitions of anonymity may be based on any equivalence relation. One
interesting future direction may be to attempt to model probabilistic systems
using our definitions with a probabilistic bisimulation. Finding the right defini-
tion of probabilistic bisimulation would be key to making this work. We know
of no tools for checking probabilistic bisimulation, so automatically calculating
probabilistic anonymity degrees would not be trivial.

We model intruders by making their private communications visible to the
attacker. This is done by removing the actions that the intruders see from the sets
of actions that are hidden and renamed. We do not remove any actions from those
that are encapsulated, i.e., those that are forced to synchronise. If we did remove
names from this set too then the communications that were forced to happen
with the intruder could instead happen with the outside environment. This would
allow us to model active inside attackers that deviate from the protocol. However
as actions can in general synchronise with a range of other actions care would
have to be taken to ensure that the communications that the attacker is given
access to are exactly those that are used by the intruder.

Another possible extension of our framework would be to automatically
search for the worst anonymity for a fixed number of intruders. For instance,
in the Dining Cryptographers protocol the intruders can be much more effective
when spaced out, rather than when they are direct neighbours. We could gen-
erate all possible placements of intruders and then test each system to find the
lowest anonymity degrees. Such an analysis might help to identify weak points
in anonymity protocols that could be strengthen to make inside attacks harder.

The µCRL toolset includes state space optimisation tools that we haven’t
yet taken into account. Confluence reduction, for instance, has been successfully
employed in keeping state spaces manageable [5] and might be useful in our case
as well.

References

1. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37(1):77–121, 1985.

2. O. Berthold, A. Pfiztmann, and R. Standtke. The disavantages of free mix routes
and how to overcome them. In Proc. Workshop on Design Issues in Anonymity
and Unobservability, volume 2009 of LNCS, pages 30–45. Springer, 2000.

3. M. Bhargava and C. Palamidessi. Probabilistic anonymity. In Proc. 16th Interna-
tional Conference on Concurrency Theory, volume 3653 of LNCS, pages 171–185.
Springer, 2005.

4. S. C. C. Blom, W. J. Fokkink, J. F. Groote, I. van Langevelde, B. Lisser, and J.
C. van de Pol. µCRL: A toolset for analysing algebraic specifications. In Proc. 13th
Conference on Computer Aided Verification, volume 2102 of LNCS, pages 250–254.
Springer, 2001.

5. S. C. C. Blom, J. F. Groote, S. Mauw, and A. Serebrenik. Analysing the BKE-
security protocol with µCRL. In Proc. 6th AMAST Workshop on Real-Time Sys-
tems, volume 139 of ENTCS, pages 49–90, 2004.

6. S. C. C. Blom and S. M. Orzan. A distributed algorithm for strong bisimulation
reduction of state spaces. Software Tools for Technology Transfer, 7(1):74–86, 2005.

7. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1:65–75, 1988.

8. T. Chothia. Analysing the mute anonymous file-sharing system using the pi-
calculus. In Proc. 26th Conference on Formal Methods for Networked and Dis-
tributed Systems, volume 4229 of LNCS, pages 115–130, 2006.

9. T. Chothia, S. M. Orzan, and J. Pang. µCRL specifications. http://www.win.

tue.nl/~sorzan/anonymity.
10. Y. Deng, C. Palamidessi, and J. Pang. Weak probabilistic anonymity. In Proc. 3rd

Workshop on Security Issues in Concurrency, 2005.
11. C. Dı́az, S. Seys, J. Claessens, and B. Preneel. Towards measuring anonymity. In

Proc. 2nd Workshop on Privacy Enhancing Technologies, volume 2482 of LNCS,
pages 54–68. Springer, 2002.

12. J. van Eijck and S.M. Orzan. Epistemic verification of anonymity. In Proc. Views
On Designing Complex Architectures (VODCA’06), 2006.

13. A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large
scale elections. In Proc. 3rd Workshop on the Theory and Application of Crypto-
graphic Techniques, volume 718 of LNCS, pages 244–251. Springer, 1992.

14. F. D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable anonymity.
In Proc. 3rd ACM Workshop on Formal Methods in Security Engineering, pages
63–72. ACM Press, 2005.

15. J. F. Groote and M. A. Reniers. Algebraic process verification. In J. A. Bergstra,
A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra, pages 1151–1208.
North-Holland, 2001.

16. J. Y. Halpern and K.R. O’Neill. Anonymity and information hiding in multiagent
systems. Journal of Computer Security, pages 483–514, 2005.

17. D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy: A
modular approach. Journal of Computer Security, 12(1):3–36, 2004.

18. H. Hüttel and S. Shukla. On the complexity of deciding behavioural equivalences
and preorders - a survey. Technical Report RS-96-39, BRICS, 1996.

19. S. Kremer and M. Ryan. Analysis of an electronic voting protocol in the applied
pi-calculus. In Proc. 14th European Symposium on Programming, volume 3444 of
LNCS, pages 186–200. Springer, 2005.

20. A. Lomuscio and F. Raimondi. MCMAS: A tool for verifying multi-agent sys-
tems. In Proc. 12th Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 3920 of LNCS, pages 450–454. Springer, 2006.

21. S. Mauw, J. Verschuren, and E. P. de Vink. A formalization of anonymity and onion
routing. In Proc. 9th European Symposium on Research in Computer Security,
volume 3193 of LNCS, pages 109–124. Springer, 2004.

22. S. Mauw, J. Verschuren, and E. P. de Vink. Data anonymity in the FOO voting
scheme. In Proc. Views On Designing Complex Architectures (VODCA’06), 2006.

23. M. J. Meritt. Cryptographic Protocols. PhD thesis, Georgia Institute of Technology,
1983.

24. R. van der Meyden and K. Su. Symbolic model checking the knowledge of the dining
cryptographers. In Proc. 17th IEEE Computer Security Foundations Workshop,
pages 280–291. IEEE, 2004.

25. J. Pang. Analysis of a security protocol in µCRL. In Proc. 4th Conference on
Formal Engineering Methods, volume 2495 of LNCS, pages 396–400. Springer, 2002.

26. A. Pfitzmann and M. Hansen. Anonymity, unobservability, and pseudonymity: A
proposal for terminology, draft v0.23, August 2005.

27. M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web transactions. ACM
Transactions on Information and System Security, 1(1):66–92, 1998.

28. S. Schneider and A. Sidiropoulos. CSP and anonymity. In Proc. 4th European
Symposium on Research in Computer Security, volume 1146 of LNCS, pages 198–
218. Springer, 1996.

29. A. Serjantov and G. Danezis. Towards an information theoretic metric for
anonymity. In Proc. 2nd Workshop on Privacy Enhancing Technologies, volume
2482 of LNCS, pages 41–53. Springer, 2002.

30. V. Shmatikov. Probabilistic model checking of an anonymity system. Journal of
Computer Security, 12(3/4):355–377, 2004.

