
Anti-Cheat: Attacks and the Effectiveness of Client-Side Defences
Sam Collins

University of Birmingham

Birmingham, UK

sxc1327@student.bham.ac.uk

Alex Poulopoulos

University of Warwick

Coventry, UK

alex.poulopoulos@gmail.com

Marius Muench

University of Birmingham

Birmingham, UK

m.muench@bham.ac.uk

Tom Chothia

University of Birmingham

Birmingham, UK

t.chothia@bham.ac.uk

Abstract
This paper studies game cheats as one of the most widespread forms

of man-at-the-end (MATE) attacks. We analyse 80 representative

web sites selling game cheats, finding an active market, with cheats

selling for up to hundreds of dollars a month. We conservatively

estimate the combined revenue from selling these MATE attacks to

range between $12.8M and $73.2M annually. To find out how game

companies attempt to stop these attacks, we survey game cheat

forums and experiment with the client-side anti-cheat solutions

of 11 different popular competitive multiplayer shooter titles. We

create a classification of defense techniques used by these anti-

cheat solutions and create a benchmark to assess their technical

sturdiness. Our findings suggest that prices for cheats are closely

correlated to the technical sturdiness of the anti-cheat software

they have to overcome. This correlation exceeds any other factor

including, perhaps surprisingly, the popularity of the game targeted

by the cheat. This shows that strong defenses against MATE attacks

have a measurable real world impact.

CCS Concepts
• Security and privacy→ Software reverse engineering; Domain-
specific security and privacy architectures; Software security engi-
neering; Software and application security;

Keywords
Game cheats, Anti-cheat, Man-at-the-end attacks

ACM Reference Format:
Sam Collins, Alex Poulopoulos, Marius Muench, and Tom Chothia. 2024.

Anti-Cheat: Attacks and the Effectiveness of Client-Side Defences. In Pro-
ceedings of the 2024 Workshop on Research on offensive and defensive tech-
niques in the context of Man At The End (MATE) attacks (CheckMATE ’24),
October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3689934.3690816

1 Introduction
Enforcing that a third party is behaving as expected is a difficult

problem in cyber security. Technologies such as attestation, trusted

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1230-2/24/10

https://doi.org/10.1145/3689934.3690816

execution, and DRM all address this issue in different ways. These

systems consider the attacker to be a "Man-at-the-end" (MATE) with

some level of control over the software and hardware being used [3].

In this paper we study the relevance, technical aspects, efficacy,

and impact of widely deployed, yet often overlooked, category of

software protecting against MATE attacks: game anti-cheats.

Over the last decades, video games have secured their place in

the mainstream media landscape with a multi-billion dollar market

expected to further grow in the foreseeable future [1, 21]. A signifi-

cant share of this market are competitive online multi-player games,

including widely known titles such as Fortnite or Counter Strike.

While most people play these games fairly, a significant minority

cheat, disrupting the experience for other players. To counter cheat-

ing and catch offending players, most competitive titles employ

anti-cheat systems, which are either customised in-house solutions

or third party products shared by multiple games [7].

To understand the relevance of anti-cheats, we survey cheat

selling websites. We find cheats available for all games surveyed,

sold as downloadable software packages on a subscription model,

with prices ranging from $10 to $240 a month. Based on traffic data

from similar-web and a standard e-commerce model, we analyse the

activity of 80 cheat selling sites in Europe and North America. From

this we conservatively estimate the number of people buying cheats

on these websites as 30,000 - 174,000 per month. This represents a

large number of people paying a significant amount of money to

buy MATE attack software.

To find out how anti-cheats workwe carried out a survey of game

cheat discussion forums. These are public forums where experts

discuss the technical details of anti-cheats and how cheats can

counter them. Our survey results in a taxonomy of MATE defense

techniques that are currently being deployed by game companies.

Additionally, we find that most of the leading Windows anti-

cheat systems (unlike the cheats) run Microsoft signed, kernel-level

code, with the most advanced anti-cheats mimicking the behaviour

of bootkits to verify the integrity of the operating system’s kernel

starting from early boot [47]. While virtualization and introspection

would be a powerful way to cheat, modern games often require high

performance GPUs, meaning that they cannot effectively be fully

virtualized on standard hardware. Despite this, cheats are easily

available for all leading games, indicating that none of the current

anti-cheat systems completely prevent cheating.

This leads us to define a novel sub-variant of the MATE attacker

model, in which the attacker is the end user, running on a trusted

operating system, without kernel level privileges. The attacker’s

https://doi.org/10.1145/3689934.3690816
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3689934.3690816

CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA Sam Collins, Alex Poulopoulos, Marius Muench, and Tom Chothia

goal is to run a program while reading or altering its memory

and function, which would typically be done by downloading dis-

tributed cheat software. The target program, and protections, may

run with kernel level privileges. This is distinct from the general

MATE attacker model in which the attacker may be assumed to

have a higher level of control over the hardware and OS.

Based on our insights, we develop a series of grey-box tests

to benchmark the strength of anti-cheat systems. We apply these

to 11 popular competitive first and third person shooter games.

Empirically confirming the results from our survey, we find that

themost effective defenses run in the kernel from boot time and take

steps to continually ensure kernel integrity. Weaker methods run at

the user level and use process scanning and anti-debug techniques.

Last, to assess the impact of strong anti-cheat technologies, we

analyze the prices for cheats for particular games across the most

popular cheat selling sites. We find that while strong anti-cheats

do not prevent the existence of cheats, their technical sturdiness is

correlated with increased attacker costs and higher cheat downtime.

We do not find a correlation between cheat price and factors such

as game age or popularity. This indicates that in the case of game

cheats strong MATE defenses are a driving factor in the cheating

economy, increasing the price for available cheats and literally

increasing the costs for attackers.

In summary, the contributions of this paper are:

• We show that there is a substantial market of game cheats,

using a range of MATE attack methods.

• We survey cheat discussion forums to find what MATE de-

fense techniques are used by anti-cheat solutions.

• We establish benchmark criteria to rank the strength of anti-

cheats, and use this to test the most widely used anti-cheat

systems.

• We show that technically sturdy anti-cheat solutions directly

increase the market cost of cheats, so increasing the cost for

attackers.

We provide our code for benchmarking anti-cheat strength and the

raw data we collected from cheat selling sites at: https://github.c

om/SamCollins1327/Anti-Cheat_2024.

2 Background
2.1 MATE attacks
Man-At-The-End (MATE) attacks describe a strong attacker model

in which a malicious actor has (physical) access to the victim de-

vice [3]. In contrast to a Machine-in-the-Middle attacker model,

which places an adversary on the network and allows them to in-

tercept and modify exchanged network traffic, MATE attackers are

assumed to be able to tamper with the hardware or software of a

target system without restriction. MATE attackers play a crucial

role in the areas of Software Protection and Digital Right Manage-

ment. In these scenarios, defenses have to consider "all-powerful"

attackers who have control over the system on which the assets

to protect are run. Thus, many defences against MATE attacks are

not expected to prevent attacks completely, but rather to slow or

deter an adversary, for instance via code obfuscation, deployment

of anti-debug techniques, or remote attestation [8, 19, 22].

One category of MATE attacks are video game cheats, as ac-

knowledged by the literature (e.g., [2, 4, 8, 14, 36]). However, these

Figure 1: A diagram illustrating the communication between
the user-mode and kernel-mode on Windows, adapted from
[38]. Anti-cheat solutions may run both in user and kernel
mode, while modern cheats begin their execution in user
mode.

papers mention cheats as potential example for MATE attacks. In
contrast, in this work, we set out to understand the role of anti-cheat

solutions (i.e., the defences) used by modern video games.

2.2 Windows Internals & Privilege Levels
The majority of cheats target games running onWindows and need

to bypass the protections offered by the anti-cheat and the operating

systems itself. A processor running windows supports two different

access modes: usermode and kernel mode. Applications operate in

usermode, while core system operations and device drivers operate

in the kernel (i.e., ntoskrnl.exe1). The relationship between the two

is illustrated in Figure 1.

User-mode applications are self contained, each with their own

virtual address space in physical memory. Applications run in isola-

tion, and can only interact with each other through specific means

such as pipes, sockets, and Remote Procedure Calls (RPC). There-

fore one process cannot access the memory of another without the

correct handles or permissions. Moreover, if a process crashes, it

crashes in isolation.

Kernel-mode processes run with fewer restrictions and share a

single virtual address space. Kernel operations include management

of system resources, such as the processor and memory, file system

operations via File System Drivers, and device drivers. Since the

virtual memory space is shared, one kernel program may write

to the memory of another; if a program should crash, the entire

system will crash in the infamous Blue Screen of Death (BSOD).

An important feature of Windows kernel security is Driver Sig-

nature Enforcement (DSE), introduced with 64-bit Windows Vista.

This requires that any driver running in kernel modemust be signed

in order to load, preventing malicious or poorly written code from

entering kernel space. DSE can be disabled manually by booting

into test mode, allowing drivers to be self signed and tested. This

1
ntoskrnl.exe includes both the Windows executive and the so called “undocumented

kernel”. Their distinction is not important in the context of this work.

https://github.com/SamCollins1327/Anti-Cheat_2024
https://github.com/SamCollins1327/Anti-Cheat_2024

Anti-Cheat: Attacks and the Effectiveness of Client-Side Defences CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 2: An example of an ESP cheat for the game Counter
Strike: Global Offensive, adopted from [34]. The wallhack
outlines enemies in red waiting in ambush behind the wall,
and shows their locations on the mini-map, giving the
cheater a large advantage.

also disables certain functionality related to Digital Rights Manage-

ment
2
. Additionally, processes can check if test signing is enabled

with functions such as NtQuerySystemInformation. Core kernel
functions and structures are further protected by Windows Kernel

Patch Protection (KPP) and will cause a BSOD if hooked or edited.

The restrictions on driver loading and kernel modifications are

key security features for modern versions of Windows: Even as

fully privileged user, full control over the system is not warranted.

2.3 Cheating in Competitive Shooter Games
Cheat types are highly dependent on the category of game they

target. In this study, we focus on online, multiplayer shooter games

that are dominated by two classes of cheats: ESPs and aimbots.

Extra-Sensory Perception (ESP) cheats are designed to grant

an unfair advantage to players by providing them with supple-

mental information not ordinarily accessible through the standard

player interface. They extract data from the game’s memory or

rendering pipeline, intercepting properties such as player loca-

tions, health, and equipped weapons. This extracted information

may subsequently be displayed on both the game map and the

player’s screen. An especially common subcategory of ESP cheats

are so called “wallhacks”, which enables the player to see opponents

through obstacles such as walls, as shown in Figure 2.

Aimbots automate the aiming process, resulting in instanta-

neous and precise targeting of opponents. Modern aimbots are

highly configurable and allow, e.g., prioritization of opponents

based on their health or proximity to the player. Additionally, it is

noteworthy that traditional “rage aimbots” which instantly redirect

the players crosshair have been largely replaced by “silent aim” con-

figurations. In this case, the cheats are aiming to mimic a natural

player’s aiming process to avoid detection by other players or AI.

2
To name some: high-bandwidth digital content protection (HDCP), Protected Media

Path (PMP) , Media Foundation Protected Pipeline (MFPP), Encrypted File System

(EFS)

Other types of cheats.While ESP cheats and aimbots are by

far the most popular for online multiplayer shooter games, further

types of cheats exist for this class of game, for instance so called

“spinbots” or “triggerbots”. However, these type of cheats are notably

less widespread, which is why we exclude them from the scope of

our study.

2.4 Cheat Development & Game Hacking
Methods

Cheats are either ‘internal’, i.e., injected into the process and mod-

ifying game code in-vivo, or ‘external’, i.e., running in a separate

process while reading and sometimes writing the game’s memory

externally, often providing overlays or synthetic input [20]. Cheat

development often relies on traditional binary analysis techniques,

described in brief detail in the following.

Static Analysis. is commonly used in cheat development and refers

to the analysis of code without running it. Depending on informa-

tion available, static analysis concerns source code, bytecode, or

machine code, and may leverage reverse engineering frameworks

(e.g., IDA Pro or Ghidra). The aims of static analysis for cheat de-

velopment are straight forward: finding useful segments of code,

offsets, missing checks, or vulnerabilities. In modern games, code

obfuscation, packing, and virtualization make static analysis much

more complex.

Dynamic Analysis. One of the more classic cheat development and

execution techniques is (dynamic) memory scanning during the

game’s run time. Games store all their running information in

memory, the same as any other process. Commonmemory scanning

tools, such as Cheat Engine
3
, allow their users to locate and modify

game-critical values (e.g., hit points, enemy locations, and similar)

in memory. Protecting against according modifications is a key task

for modern client-side anti-cheat solutions. However, preventing

scanning of memory in the general case is more challenging and

often relies on finding and blocking the external process.

Cheat development may also rely on debugging the target game,

allowing identification of game-critical logic and data with addi-

tional transparency. For instance, developers may analyse the stack

layout at certain points in execution, set breakpoints, and carefully

step through the running code to understand the game’s behaviour.

However, while more powerful, debugging is also more invasive

and, hence, easier to detect and prevent by anti-cheat solutions.

Code Injection & Hooking. Code injection is a common technique

used to insert and execute custom logic in the context of the target

application. For instance, Dynamic Link Library (DLL) injection, is

a classic way to implement and distribute “internal” cheats: rele-

vant game data discovered via static and dynamic analysis can be

automatically modified during run-time by an injected DLL. This

DLL is then packaged and distributed to the users of a cheat, often

along with a "launcher" to handle injection.

In contrast to plain code injection, which adds new stubs of

functionality, hooking is a binary alteration technique that involves

rerouting particular functions or system calls to change their func-

tionality. An example of hooking in the context of game cheating

3
https://www.cheatengine.org/

https://www.cheatengine.org/

CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA Sam Collins, Alex Poulopoulos, Marius Muench, and Tom Chothia

is vTable modification which makes it possible to re-implement (or

augment) crucial functions of the game logic to enable the cheat.

3 Attacker Model
We characterise game cheats as a variant ofMATE attacks, following

our investigation of cheat discussion forums and selling sites in the

following section.

First, we assume that the game, anti-cheat, and cheat are all

running on some version of Windows OS, since it holds the lion’s

share of the PC gaming market, with 96.94% of Steam
4
users playing

on Windows [6]. The cheater/attacker runs an unaltered copy of

Windows, as providing a modified versions of the operating system

are impractical for the distribution model of cheat selling sites. The

anti-cheat code may be signed by Microsoft allowing it to run in the

kernel, inspect any process and hook into system calls. Contrary,

game cheats are not signed by Microsoft.

This gives the defender an advantage, and is distinct from the

general MATE attacker model, in which the attacker is assumed to

have full control over the hardware and software they run [3]. If the

kernel-level protection onWindowsworked correctly, and the game

and anti-cheat were well written, the system should successfully

mitigate MATE attacks (i.e., cheats). However, as we will show, this

is not the case and we found game cheats available for all studied

games.

The attacker’s goal is to alter the running software by, for in-

stance, directly reading or writing process memory. The defender

aims to protect the confidentially and integrity of the games’ mem-

ory, with a secondary goal of identifying and banning players at-

tempting to cheat. Anti-cheats do not use trusted hardware, such

as the SGX, as this would restrict who can run the game.

4 Analysing the Video Game Cheat Market
In this paper we suggest that game cheats and anti-cheats are an

important form of MATE attack; that the attack methods developed

by cheaters and the defense methods deployed by companies are

state of the art and worthy of further study. Part of the reason

for this is the money that can be made from selling cheats; with a

clear financial incentive it makes sense for attackers to continually

develop better cheats, and to counter these, games companies will

need to deploy the best MATE defenses.

To understand the market in game cheats we survey cheat selling

sites. In this section we estimate the size of the cheat selling market

and in Section 6 we use the prices of individual cheats to help

measure the impact that strong anti-cheat defenses have in practice.

We create a data set by scraping representative web sites selling

and distributing cheats for popular games, and further analyse their

operations as well as the legal aspects of game cheats. Additionally,

based on our data, we estimate the market size and revenue gener-

ated by game cheats. Overall, our analysis indicates that anti-cheats

may have a substantial financial relevance for the modern video

game market.

4.1 Methodology and Dataset
Game & Cheat Selection. We focus on player vs player shooter

games for PC, such as Call of Duty Warzone and Fortnite, due to

4
The largest PC game distributor, holding ∼75-80% of EU and NA market share.

their similarity in game mechanics, competitive nature, and com-

mercial success. We selected the 13 most popular games in this

genre, excluding the games “Escape from Tarkov” and “PlayerUnk-

nown’s Battlegrounds (PUBG)”, as we cannot fairly compare them

with the other games: The former heavily penalises players for

loosing and the latter did not allow us to obtain figures for its PC

vs mobile player base. This leaves us with 11 games in total.

Among our selected games, Fortnite has the youngest age de-

mographic and is very popular with children [18]. Even when only

considering adult players, 60% of Fortnite players fall within the

18-24 age range [43], although we anticipate this percentage to

be even higher among PC Fortnite players. While cheats are not

unheard of on consoles, they are notably less common. Consoles

pose a greater challenge for cheat development and implementa-

tion. We observe that e-sports aspirations and competitive drive

are less prevalent among console players - two factors influencing

individuals to cheat.

We note that our study focuses solely on client software cheats.

Hence, we exclude other methods of cheating, such as cheats re-

quiring customized hardware [37] or doping with performance

enhancing drugs [31] and detection methods such as server side AI

pattern recognition.

Cheat Distribution Platforms. To construct an actionable dataset

we first collated a comprehensive list of cheat sites.We first collected

∼20 representative sites by searching google using keywords from

our keyword list
5
. Then, we used the SimilarWeb’s ‘Similar Site’

functionality to recursively expand this list until all found similar

sites were already part of the data set. We only added cheat websites

with more than 5000 hits a month on SimilarWeb and also excluded

outdated and unmaintained sites. Furthermore, due to the different

legal status of game cheats in China and Korea, and language issues,

we excluded these sites from our dataset. This lead to 80 cheat sites,

mostly hosted in Europe and North America.

For these 80 sites, we collect site name, average monthly traffic

between August and October 2023 inclusive, the average price of

a 1, 7, and 30 day cheat (where available), as well as the standard

e-commerce conversion values to conduct a wider market analysis,

as outlined in Section 4.4. Additionally, we sample 21 sites for a

more detailed dataset, including individual cheat prices for the 11

selected games, uptime of cheats, and popularity of the respective

games.We list these sites in Table 1 and use the data for a correlation

analysis with anti-cheat strength in Section 7.

We publish all collected data as part of our repository
6
.

4.2 Operational Aspects of Cheat Distribution
Platforms

We found that all surveyed cheat distribution platforms are web

sites with professionally organised marketplaces, typically selling

a range of cheats for top games. We show a representative example

of such a site in Figure 3.

Sales work on a subscription basis, with subscriptions varying

from one day trials to three months. Accepted payment methods

5
https://github.com/SamCollins1327/Anti-Cheat_2024/blob/main/DataSets/Keywor

ds.csv

6
https://github.com/SamCollins1327/Anti-Cheat_2024/tree/main/DataSets

https://github.com/SamCollins1327/Anti-Cheat_2024/blob/main/DataSets/Keywords.csv
https://github.com/SamCollins1327/Anti-Cheat_2024/blob/main/DataSets/Keywords.csv
https://github.com/SamCollins1327/Anti-Cheat_2024/tree/main/DataSets

Anti-Cheat: Attacks and the Effectiveness of Client-Side Defences CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 3: A Screenshot of the site Veterancheats from June
2024, showing available cheats for the game Apex Legends.

typically include credit/debit cards, a wide range of crypto curren-

cies, or third party services such as Paypal or Stripe. Many sites

further include a recommendation system for customer reviews,

similar to contemporary e-commerce platforms such as Amazon or

Ebay. Additionally, the majority of sites also include a status page

showing whether a given cheat is currently expected to be working

and/or detected by anti-cheat systems.

Almost all cheats sold are bundling different types of cheats

together and include both ESPs and aimbots. Cheats mainly differed

on how much information the ESP displays on the screen and the

claimed reliability of the cheat. For example, some cheats explicitly

note that they—allegedly—never had been detected previously.

Some platforms clearly develop and sell their own cheats, while

others are pure distributors with multiple cheats of different origin

available for the same game. Contrary to the underground economy

related to “hacking”, fraud, and cyber crime forums [11], we did

not find any evidence of scams or malware on popular cheat selling

sites. We believe that this is based on financial incentives: Much

more money can be made from selling a regular cheat subscription

than scamming potential customers. This is re-enforced by the

reviewing systems on the cheat distribution platforms, as it enables

an easy detection of untrustworthy cheat sources.

4.3 Legal Status of Game Cheats
If game cheats were clearly illegal then the best way to stop them

might be to prosecute the cheat providers. If this was the case,

technically strong anti-cheat solutions are less important. However,

if legal action is not an effective option then games companies

must develop and deploy technically strong anti-cheats. Hence, we

investigate the legal aspects of cheats and previous lawsuits with

cheat developers or distribution platforms as defendants.

Cheating in video games is not a crime in most countries, with

the notable exceptions of South Korea and China, which have dedi-

cated laws against using cheat software. Regardless of explicit laws,

cheating does violate the terms of service of most games, which al-

lows companies to withdraw services and ban cheating players. The

lack of actionable laws in most countries results into cheat sellers

operating without restrictions, as shown in the last section. Prices

are advertised openly, payment is often taken via credit card, and

distribution platforms are available on the public facing internet

rather than, e.g., Tor hidden services.

So far, legal action against cheat sellers has mainly been based

on claiming that the cheats were a “derivative work” of the tar-

geted game and therefore infringes copyright protections. We could

find no record of successful legal action against cheat sellers us-

ing laws targeting circumvention of protections, such as the US

Digital Millennium Copyright Act (DMCA). The first legal action

against developers of a commercially available cheating device (i.e.,

the Game Genie) was initiated by Nintendo in 1992 for copyright

infringement [35]. The court found that the cheats were computer

algorithms that did not include any of the plaintiffs code and, hence,

did not infringe any copyright. More recently the company Blizzard

has sued the—now defunct—cheat seller Bossland on copyright

grounds [26]. First in Germany, where a court sided with the seller,

ruling that the cheat did not qualify as copyright infringement.

Then Blizzard repeated the case in the US where Bossland did not

defend themselves and a judge gave a summary judgement against

them, awarding Blizzard $8 million in damages. Following this,

Bossland shut down, suggesting that in this particular instance

legal action was effective.

In a similar spirit, the games company Bungie successfully sued

multiple sites selling cheats for their game Destiny 2, claiming that

the cheats were a “derivative work” of their game and therefore

infringe their copyright [49]. In a case against Lavi Cheats a judge

agreed, awarding Bungie $6.7 million in damages
7
[49]. However,

in a second case against the Aim Junkies cheat site, a different

judge dismissed the case, arguing that Bungie failed to demonstrate

that the cheats were derivative work [39]. In 2023, Bungie further

successfully sued Veteran Cheats and ring-1 [46]. Out of all the

sites sued, only ring-1 continues to sell a Destiny 2 cheat, however

all of the sites sued remain in business and continue to sell cheats.

Overall, our analysis shows that developing and selling game

cheats is legally much safer than, for instance, writing malware,

and that legal action against cheat distribution platforms may have

some temporary effect on cheat availability, but is not effective

in suppressing the existence of cheats altogether. Therefore, there

is a clear need for games to be protected by technically strong

anti-cheat/MATE defenses.

4.4 Market Size and Revenue of Video Game
Cheats

To provide additional indicative data of the financial real-world

relevance of a widely available type of MATE attacks, we estimate

the size of the market in game cheats.

As no concrete sales figures or public accounts are available, we

can only estimate the revenue of cheat sellers. We collect traffic data

for each website and apply a standard conversion rates estimate
8

7
US law allows derivative work for comical purposes, therefore if the cheats had added

elements of parody to the game they may have been exempt from copyright issues.

8
I.e., the percentage of buyers over the total amount of visitors.

CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA Sam Collins, Alex Poulopoulos, Marius Muench, and Tom Chothia

Table 1: Selected sites, their average monthly traffic between
August and October 2023, the average price of a 30 day cheat
on the site, and the min/max price of a cheat for 11 analysed
games.

Site Avg. Avg. 30 Day Min. Max.
mo. Traffic Cheat Price Price Price

Engine

509,720 $13.80 $10.89 $19.59

Owning

Sky Cheats 197,463 $92.43 $35.00 $130.00

Battle Log 194,463 $72.84 $19.90 $145.75

Kernaim 189,338 $41.13 $16.50 $60.00

Lavi Cheats 153,429 $71.08 $29.00 $109.00

Interwebz

144,838 $21.79 $21.79 $21.79

Cheats

Aimware 135,784 $19.16 $17.24 $22.99

Ring-1 115,353 $54.00 $29.00 99.00

Phantom

87,528 $32.546 $19.96 $43.24

Overlay

Clutch

84,731 $41.89 $22.11 $59.95

Solutions

AC Diamond 84,410 $81.33 $49.00 $120.00

Private

78,166 $99.79 $24.99 $174.99

Cheatz

Aim

62,063 $44.12 $14.95 $99.95

Junkies

Time2Win 54,415 $68.84 $29.99 $119.99

Veteran

45,452 $128.02 $22.11 $254.28

Cheats

Wallhax 45,086 $15.00 $15.00 $15.00

Chod’s

37,540 $28.96 $19.87 $38.05

Cheats

Proofcore 36,408 $66.66 $49.99 $99.99

Cheat Army 31,100 $62.36 $17.50 $110.00

Perfect Aim 12,524 $17.87 $6.63 $35.38

Invision

10,757 $49.75 $11.06 $66.33

Cheats

for e-commerce sites ranging from 0.7% to 4%, as suggested by

Salesforce [15]. Sites sell access to a cheat for, e.g., one day, one

week, thirty days, or 90 days. We apply the conversion rate to the

mean monthly price of a cheat from each site in the following way:

Site Monthly Revenue = (Mean Monthly Price)
×(Monthly Site Traffic)

×(0.7%, 4%)

Considering the 80 sites of our data set, this model suggests a

combined revenue generation between $1.1M - $6.1M per month,

i.e., $12.8M and $73.2M annually. If we consider the number of

people buying cheats, we estimate 30, 000 − 174, 000 customers per

month across all sites. Given that these figures do not include cheats

brought via forums, Asian cheat sites, or cheats shared for free, we

have a high degree of confidence that the actual number of people

regularly cheating in video games is higher than our upper bound.

To verify that the 0.7% - 4% conversion rate figure used in our

model applies to this market, we seek out for additional data points

which may support or refute our estimations.

First, we investigated the Discord communities for a subset of

the sites for indications of active customer count. We note that

this approach is challenging as Discord does not allow explicit

cheat-selling forums on its platform. Nonetheless, there are various

loopholes depending on the discussed content in the community,

but well-established Discord servers with accurately role-labeled

members are not common. At time of our analysis, the most ac-

tive Discord server tied to a cheat selling website was Sky Cheats.

Upon our first inspection, this Discord had 12,167 total members.

At the time, there were 1,826 members online, with 145 explicitly

marked as non-customers, leaving 1,681 confirmed customers on-

line. With our 0.7%-4% traffic model we estimate between 1045 and

5971 active customers for Sky Cheats. This puts active customers

on Discord within the range of our web traffic estimate. However,

many customers may have not been online at the time of our check.

Additionally, “Cheat Army” also used Discord at the time of data

collection and we observed 1188 active customers which is well

within our traffic estimate of 1045-5971. Again we note that cheaters

may not have join the Discord server in the first place. Therefore,

we assume the true number of active customers to be higher in

both cases.

Second, we draw from insights of our legal analysis presented

in the last section. A particular interesting case is against one of

China’s top cheat selling sites. It estimated an income of at least

$350,000 per month [24], which is towards the higher end of our

range estimate for the top sites included in our data set. In the case

of Bungie vs Veteran Cheats [46], a subpoena against Stripe Inc., a

third-party payment company used by Veteran Cheats, showed that

5,848 Destiny 2 cheats had been sold in 19 months from November

2020 to July 2022. This is higher than our estimate, whose upper

value would have been 3,699 for this time period.

The size of this market suggests that game cheats will remain

one of the most important form of MATE attacks. The financial

incentives will mean cheat developers will put a lot of effort into dis-

covering more inventive attack methods, and this will be countered

by stronger anti-cheats from the games companies. This provides

evidence for our view that the MATE community can learn a lot

from studying cheats and anti-cheats.

5 Taxonomizing Anti-Cheat Technology
In this section, wewill provide a technical analysis and classification

of defenses against MATE attacks, as deployed by client-side anti-

cheat engines.

5.1 Methodology
Given the limited amount of prior work on the topic of anti-cheat

engines, we base our classification on a variety of rather unconven-

tional sources of knowledge. We not only analysed representative

anti-cheat solutions, but also studied blog posts and discussions

on online forums on game hacking and cheating. More specifically,

we again started with google searches using our list of keywords,

but this time to find discussion forums and blogs rather than cheat

Anti-Cheat: Attacks and the Effectiveness of Client-Side Defences CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 2: Selected games, their anti-cheat solutions, and the
privilege level of the anti-cheat solution.

Priv. Class Game Anti-cheat

User Mode

Counter-Strike 2 Valve Anti-Cheat (VAC)

Team Fortress 2 Valve Anti-Cheat (VAC)

Overwatch 2 Blizzard Defense Matrix

Battlefield 1 FairFight

Kernel Mode

Apex Legends Easy Anti-cheat (EAC)

The Finals Easy Anti-cheat (EAC)

Fortnite

Easy Anti-cheat (EAC)

& BattlEye

Rainbow 6 Siege BattlEye

Battlefield 2042 EA Anti-cheat

Warzone Ricochet

Kernel Mode

Valorant RIOT Vanguard

on Boot

selling websites. We then selected five active and timely discus-

sion platforms for further information retrieval: UnKnoWnCheaTs,

GuidedHacking, OwnedCore, MPGH, and Secret.club. We searched

these sites for the keywords between September 2022 and January

2024 to find relevant posts and discussions.We used the information

gathered from these sites to establish a classification of anti-cheat

techniques.

We note that our study focuses on client-side anti-cheating solu-

tions. Thus, we refrain from assessing technically advanced server-

side defenses such as machine-learning based behavioral analysis

[5, 44]. Instead, we only consider local defenses and simple server-
side solutions, such as bans based on hardware or account IDs. The

complete list of investigated sites, the key words used for searching,

and forum/blog references for each technical method listed are

available in our repository.

Limitations: We note that this investigation is based on the

expert knowledge available on the cheat forums searched. This

provides enough information to bypass most anti-cheats, however

it is possible that anti-cheats implementation additional protections

not discussed on these forums. Data was only collected up until

January 2024, and additional defense strategies may have become

part of anti-cheat solutions after this.

5.2 Data Set
We analyse and evaluate the anti-cheat engine used by our 11 se-

lected games (c.f., Section 4.1, in the time period between September

and December 2023. We show the analyzed titles and their anti-

cheat solutions in Table 2. We note that while some anti-cheats

are in-house solutions and only used for particular games (e.g.,

Vanguard or Ricochet), others are commercially available solutions

that are configurable by the game developers. Thus, the same anti-

cheat solution can employ different protection measures based on

their configuration, which is why we deliberately analyse the same

anti-cheat multiple times in case they are used by different games.

We grouped games based on the invasiveness of the anti-cheat.
The least invasive of anti-cheats run in user space alongside the

game. This category includes Counter-Strike 2 (CS2) and Team

Fortress 2 (TF2), which both use Valve Anti-Cheat (VAC), along-

side Overwatch 2 and Battlefield 1. Of these, Battlefield 1 runs no

distinct client-side anti-cheat, and therefore acts as a control in

our experiment
9
. Our second category of selected games deploy

kernel-level anti-cheat systems. Subsequently, the anti-cheat runs

at a higher privilege level than the corresponding game. Notably,

Fortnite runs two different solutions, Easy Anti-Cheat which is Epic

Games’ in-house solution also available as third-party solution for

other studios, and BattlEye, a proprietary third-party anti-cheat

solution first released in 2004. The third category is the most in-

vasive. Here, the anti-cheat not only runs at kernel level, but is

also loaded during system boot and runs constantly on the target

system whether the game to be protected is played or not. At the

time of writing, we only found Valorant, running RIOT Vanguard,

deploying this technique
10
. Notably, this anti-cheat approach re-

ceived significant backlash upon its initial introduction (e.g., [48])

due to security and privacy concerns.

5.3 Classification of Anti-cheat Techniques
Based on our survey of anti-cheat solutions, we classify the preva-

lent techniques deployed by classic and modern anti-cheat systems

for identifying and catching cheating players. This classification

will aid us to derive practical experiments to assess the effectiveness

of popular anti-cheat systems. This also provides a list of MATE

defense methods that are used by the games industry.

Player Identification. Most Anti-cheat systems aim to uniquely iden-

tify the current player to implement remediation strategies. If a

cheater is caught, most game providers want to exclude the player

from subsequent games.

P1 - Account ID. The most straightforward approach to iden-

tify players is based on their account ID. This way, players (and

cheaters) can be identified across different systems. Account based

suspension will lead to loosing game progress and can be a major

motivator to avoid cheating.

P2 - Hardware ID. To enable more permanent ban types, game

providers often take the hardware systems of cheating players

into account. Otherwise, dishonest players could simply create new

accounts after suspension and get back to playing. To enable device-

based bans, modern anti-cheat often gather (and log) serial numbers

from different components of the user hardware.

Integrity Checks. Anti-cheating technology aims to verify that the

game under protection has not been tampered with. To this end,

modern anti-cheat systems commonly deploy a mix of static and

dynamic integrity checks.

I1 - File integrity checks are one of the most basic protections

anti-cheats offer and aim to prevent static patching of game logic.

Common implementations hash the game’s files and compare these

hashes to a stored or dynamically retrieved list of valid hashes.

I2 - Run-time memory checks. Complementing static file integrity

checks, anti-cheats also try to protect the integrity of the process’

memory at runtime. This involves both protecting memory regions

9
The deployed anti-cheat engine “FairFight” provides server-side defenses only

10
At time of writing Vanguard has now been ported to League of Legends, a popular

MOBA title, but a completely different genre to shooters.

CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA Sam Collins, Alex Poulopoulos, Marius Muench, and Tom Chothia

with standard OS-functions, like the guarded mutex system Van-

guard employs, as well as systematically checking the validity of

dynamic memory. These checks work in a similar way to file in-

tegrity checks, with periodic hashing and verification.

I3 - Code injection countermeasures. To further enable game in-

tegrity, anti-cheat systems may provide defenses against code in-

jection. Particularly common are DLL injection countermeasures

to protect against simple cheating approaches which leverage the

Windows API for loading a DLL. Anti-cheats may register callbacks

for or hook functions used for code injection (e.g., LoadLibraryA()),
continuously check all loaded modules, search executable space for

manually mapped modules, or debug the game to check for newly

started threads.

Game Hardening. Games (and anti-cheats themselves) commonly

use measures to complicate analysis of the game, which aims to

slow down or prevent the development of cheats.

H1 - Obfuscation is a common technique used throughout the

field of systems security to complicate reverse engineering. It aims

to make code appear deliberately unclear and confusing while

maintaining the functionality of the software. Common obfusca-

tion techniques involve, for instance, packing, compression with

non-standard algorithms, encryption, control-flow flattening, or

instruction misalignment.

H2 - Anti-debugging measures formed the backbone of anti-cheat

systems before the development of contemporary kernel mode sys-

tems in the mid 2000s, and is still prevalent today. Integrity checks

and obfuscation makes static analysis and patching a long, arduous,

and complex task; dynamic methods with a debugger have therefore

always been a viable alternative for code analysis and manipulation.

Therefore, anti-cheat systems often attempt to prevent debuggers

from attaching, or purposefully crash the game when detecting

their presence. Registering callbacks on newly opened handles then

downgrading their privileges is a common technique, debug ports

are checked, and even hypervisor based debuggers can be barraged

with VM-Exits to reveal their presence.

H3 - Process Scanning. Scanning external running processes

serves a dual purpose: identification of suspicious tools and the

detection of cheats themselves. Most anti-cheat systems will enu-

merate through all running processes, introspect UI windows, and

their associated child windows. The goal is to uncover external

processes running cheats, reverse engineering tools, and cheat

overlays.

Kernel-level protection. For additional hardening, detection, and
protection capabilities, many modern anti-cheat systems moved

to implementing kernel mode drivers, placing the anti-cheat at a

higher privilege level than the game (and classic cheats). This makes

altering game code, injecting DLLs, and even running memory

scanners significantly more complex for cheat developers. On top

of deploying the techniques outlined above, which can be enforced

from kernel-level, kernel anti-cheats may additionally verify the

integrity of kernel-space on the user’s system.

K1 - Detecting test mode. If not properly mitigated, cheat develop-

ers may put themselves back on a level field with kernel anti-cheats

using a strikingly simple technique: Enabling test signing in Win-

dows. This feature allows the testing of driver code and provided

a straightforward way for cheat developers to load "signed" ker-

nel modules. Nowadays, most kernel-level anti-cheats engines will

prevent the protected games from running if test signing mode is

enabled.

K2 - Driver verification. Similar to recent cases in malware de-

velopment [30], cheat developers have started to abuse Microsoft

signed drivers with known vulnerabilities. Faults in these drivers

allow cheat developers to manually map code into the kernel and,

ultimately, bypass anti-cheat systems. As a countermeasure, anti-

cheats may keep a list of known vulnerable drivers which they will

block from loading, or refuse to open the game if loaded.

K3 - Detecting driver injection. To bypass anti-cheats running

with kernel-level privileges, cheats will often require to run code at

the same privilege level. The most straight-forward way to obtain

kernel-level code privileges is the insertion of additional kernel

modules containing the code required to carry out the cheat. Ker-

nel anti-cheat systems commonly rely on the operating system’s

signing and verification services. If the driver is not signed then it

cannot be loaded. Preventing the injection of unsigned drivers is

often a multi-levelled approach and can include techniques outlined

in K2 and K4. Despite the clear need to find pre-mapped kernel code,

preventing code injection altogether is the more viable approach

for anti-cheat solutions, if possible.

K4 - Malicious code identification. A core limitation of most anti-

cheat systems is that they can only execute verification tasks and

integrity checks while they are loaded. While a single anti-cheat

engine has moved to an "always-on" approach, where it is loaded at

operating system boot time, most engines are still only started to-

gether with their corresponding game. Hence, if a cheat bypassing

kernel-level protections is injected before the start of the game, ver-

ification attempts may fail, as the corresponding malicious drivers

may be unloaded at time of verification. As a result, anti-cheats may

continuously scan the kernel for executable code which isn’t part

of any properly loaded module, along with threads not backed by a

signed module. This is often amended by scanning for signatures

of known cheat drivers in the kernel space.

6 Technical Sturdiness of Anti-cheat Systems
Based on our classification of anti-cheat techniques, we can now de-

sign experiments to assess the technical sturdiness of representative

anti-cheat systems. This allows us to understand the prevalence of

MATE defenses in the video game industry and to create a ranking

over the analysed anti-cheat solutions.

6.1 Test Definition & Benchmarks Used
We develop 14 experiments to benchmark the protection mecha-

nisms popular anti-cheat systems deploy. Our experiments allow us

to evaluate the individual protections in isolation and with levels

of transparency commercial cheats cannot provide. Our tests aim

to cover the most crucial building blocks of cheats and allow us

to fairly compare the effectiveness of solutions; more exhaustive

testing of individual implementations remains a topic for future

work.

Most of our experiments map directly to one of the anti-cheat fea-

tures discussed in subsection 5.3. For instance, to assess whether an

anti-cheat carries out file integrity checks (I1), we modify relevant

Anti-Cheat: Attacks and the Effectiveness of Client-Side Defences CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA

game files. The notable exceptions to this one-to-one mapping are

the experiments around H3 - Process Scanning and I3 - Code injection
countermeasures. In both cases, we develop additional tests to assess

the feature with additional granularity. For H3, we run two distinct

experiments with different processes opened, and for I3, we test
different code injection techniques. Furthermore, we also refrain

from testing I2 - Run-time memory checks directly, since we test the
protections placed on accessing memory such as anti-debug.

In our experiments, we define a cheat attempt as prevented

when either the attack fails immediately (e.g., handle permissions

are stripped), or when it is detected by the anti-cheat and an ob-

servable reaction was handed out within the same game session

(i.e., a crash or a ban). We consider the first type of prevention as

proactive, and the latter type as reactive. Additionally, some games

may detect a cheating attempt but deliberately delay punishment

for the offending party to obfuscate which behaviour was picked

up by the anti-cheat.

We provide full technical details for the individual experiments

in Appendix A and the experiment code in the repository accompa-

nying this submission
11
.

6.2 Results
We carried out all experiments for each game in two scenarios: (1)
in the game menu and, (2) during the ongoing game. For (2), we
allowed two full game lengths where applicable for the anti-cheat

to react. As long our test accounts were not banned, we re-run the

experiment whenever we were kicked from a match or the game

crashed. This allowed us to test whether a second, subsequent

detection merited in an identical result or an escalated reaction.

We showcase the results of the individual experiments and a

categorical ranking of resulting anti-cheat strengths in Table 3.

Our ranking consists of three primary divisions of strength, fur-

ther subdivided by smaller differences recorded. Despite the direct

detection/no-detection results from the experiments, we also con-

sider the severity of response, which directly maps to the cost for

a player upon detection. For example, during our experiments we

observed that Overwatch 2 bans accounts for lighter offences than

other titles and requires a new phone number per account, adding

an additional hurdle for (repeating) cheaters.

As shown in Table 3, we observe only two systems in the top

division, Valorant and Fortnite. For both games our experiments

suggest full or partial prevention and detection of tested attack

strategies. Additionally, Valorant deploys more severe responses

and is, hence, ranked higher. Within the middle division, Battlefield

2042 and Rainbow 6 Siege deploy the strongest anti-cheats, with

the only difference being imperfections in the process scanning

approach of the latter. The Finals and Apex Legends reacted simi-

larly to our experiments. This is unsurprising, as both games run

the same third-party anti-cheat solution (i.e., Easy Anti-Cheat) and

only showcase minor diversions, which we attribute to slightly

different configuration of the solution. Between these two ranks

Overwatch 2. Although this game does not rely on kernel-level

detection capabilities, it performed well in our experiments and

reacted with severe responses (e.g., it already issued bans for simple

11
https://github.com/SamCollins1327/Anti-Cheat_2024/tree/main/Anti-CheatTesti

ng

process injection attempts). At the lower end of the middle division,

we find Warzone running the in-house solution Ricochet. Interest-

ingly, despite being a kernel-level anti-cheat system, it was unable

to detect any of our kernel-based experiments. Nonetheless, outside

of detecting kernel-level cheating patterns, Ricochet detected most

attack attempts. However, we found that it does not employ a strict

ban policy and does not even institute hardware ID based bans
12
.

The final subdivision constitutes three games: Counter-Strike 2

(CS2), Team Fortress 2 (TF2), and Battlefield 1. CS2 and TF1 both

run an identical anti-cheat, developed in-house by Valve. They each

cover a small base of protections, preventing the most basic injec-

tion and providing file integrity checks. Online sources suggest that

CS2 uses a server-side machine learning algorithm to catch some

cheats based off suspicious in-game behaviour, notably starting

back in 2017 with spinbot detection [33]. However, we could not

observe this in action during our experiments, which is why we

rank both games at the same level. Battlefield 1, however, seems

to perform almost no client-side anti-cheat detection whatsoever.

From our experiments, we find that it only employs basic anti-debug

functionality and file integrity checks. We suspect this is due to

Battlefield 1’s anti-cheat mostly relying on server-side statistical

analysis [9], which, similar as for CS2, was not triggered by our

experiments.

Limitations. We note that our ranking methodology is not free

from limitations. First we do not account for signature scanning of

cheats due to ethical concerns related to buying and running cheats

in live game sessions. Therefore, anti-cheats that only ban if the

detected code is a known cheat are inherently disadvantaged for our

experiments. However, our experiments do account for signature

scanning of known cheat tools like injectors and memory scanners.

Second, by focusing our study on client-side anti-cheat tech-

niques, we exclude supplementary server-side features such as ma-

chine learning driven behavioral analysis or statistical thresholding.

However, we argue that similar to how aimbots have evolved into

‘silent aim’, cheat developers can pick up on behavioral analysis

trends and modify cheats so that detection based on such means as

described above is less likely.

Lastly, our classification and experiments do not account for anti-

cheats with robust report systems, outsourcing the cheat detection

to other, human players. While such systems will not stop the

cheater at the time of cheating, these systems may lead to a ban

at a later point in time which may be bypassed with a Hardware

ID spoofer or simply a new account. We argue that report-based

solutions, while providing psychological benefits to benign players,

are a somewhat weaker method for actual cheat detection and

prevention.

7 The Effect of Technical Sturdiness of
Anti-Cheats

Based on the insights provided from our market analysis, as well

as the classification and ranking of anti-cheat solutions, we now

analyse whether technical strong anti-cheats stops cheating or

influences cheat availability or price. This directly provides us with

12
Cheat forums suggest that Ricochet does, however, use hardware ID to place sus-

pected cheaters into “low trust” lobbies.

https://github.com/SamCollins1327/Anti-Cheat_2024/tree/main/Anti-CheatTesting
https://github.com/SamCollins1327/Anti-Cheat_2024/tree/main/Anti-CheatTesting

CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA Sam Collins, Alex Poulopoulos, Marius Muench, and Tom Chothia

Table 3: Results of our anti-cheat strength benchmark, with games ranked by anti-cheat effectiveness.

Title P1 P2 I1 I3-1 I3-2 I3-3 H1 H2 H3-1 H3-2 K1 K2 K3 K4 Rank

Valorant (K+) G G G G G G G G G G# G 1.1

Fortnite (K) G G G G G G G G G G G G 1.2

Battlefield 2042 (K) G G G G G G G G G G G G 2.1

Rainbow 6 Siege (K) G G G G G G G G G G G 2.2

The Finals (K) G G G G G G G G G G G G# 2.3

Overwatch 2 (U) G G G G# G # G G# 2.4

Apex Legends (K) G G G G G G G G G G 2.5

COD Warzone (K) G G G G G G G# G 2.6

Counter-Strike 2 (U) G G G# 3.1

Team Fortress 2 (U) G G G# 3.1

Battlefield 1 (U) G G G# 3.2

Anti-cheat responses: : reactive prevention and banning of offending player,G: proactive prevention,G#: reactive prevention via crash

#: detection of offense with delayed ban, blank: no detection/prevention

Anti-cheat privilege: K+: kernel mode on boot, K: kernel mode, U: user.

insights whether the MATE defenses, as deployed by anti-cheats,

prevent attacks or yield increased attacker costs.

7.1 Methodology
To assess the effect of technically strong MATE defenses for stop-

ping game cheats, we gathered relevant data and calculated a set

of pairwise correlations across multiple features, we consider any

correlation above 0.5 to be significant.

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑋,𝑌) =
∑(𝑥 − 𝑥) (𝑦 − 𝑦)√︁∑(𝑥 − 𝑥)2∑(𝑦 − 𝑦)2

We consider the technical anti-cheat strength, as measured in

Section 6.We normalize their strength to a value between 0.1 and 0.9,

as none of the studied systems is perfect or completely ineffective.

Second, we investigate the price of each cheat. We collect this data

by analyzing 21 cheat sites described in Section 4 and record the

individual price of each cheat targeting a game included in our data

set. We note that while some sites only offer one cheat per game,

others offermultiple options with varying prices.We first accounted

for each cheat entry individually, however the variation between

individual sites caused significant interference in the correlations.

Thus, we use the mean price of the cheats for a given game across

all inspected site for our correlation analysis instead.

We further gathered information about cheat downtime, as ex-

plained below, and we consider the popularity of each game, using

data provided by activeplayer.io. As a popularity metric, we chose

monthly players and weight this value where necessary to dis-

count non-PC players (e.g., for Fortnite, which is widely played on

PlayStation and Xbox). Finally, we consider game age, in months

since release as of March 2024, and cheat availability. To account for

the fluctuations in available cheats per game per site, we measure

the total amount of available cheats for a given game, rather than

how many sites sell a cheat for that game.

7.2 Cheat Downtime
A primary function of an anti-cheat is to prevent cheating directly.

Therefore, we collected data on the downtime of cheats, i.e., times

at which a specific cheat is unavailable due to increased detection

Table 4: Measured combined uptime for cheats over a period
of 37 days.

Game Uptime Uptime Uptime #CheatsTitle (Mean) (Median) (St Dev)
Team Fortress 2 100% 100% N/A 1

Battlefield 1 98.0% 100% 4.4% 3

Battlefield 2024 87.7% 100% 41.5% 9

Counter Strike 2 86.2% 97.1% 29.6% 11

The Finals 83.4% 94.1% 25% 17

Rainbow 6 Siege 83.3% 88.6% 15.4% 16

Apex Legends 77.2% 97.1% 34.8% 25

Overwatch 2 73.8% 100% 40.9% 10

COD Warzone 72.4% 100% 45.3% 15

Fortnite 69.8% 85.3% 30.5% 29

Valorant 50% 52.9% 37.2% 17

rates or changes introduced by the targeted game or its anti-cheat.

Many cheat sites deploy status pages to inform customers whether

cheats are in maintenance or run a higher risk of detection than

usual. We developed scraper for 9 prevalent sites and monitored

cheat up- and downtime for a period of 37 days
13
. We disregard

cheats for which we have fewer than 7 days of information for.

Table 4 contains the average uptime of cheats for each game,

along with the number of available cheats combined over the 9

sites. In this case, lower cheat uptime represents more downtime

and, hence, hints towards a more effective anti-cheat solution. We

want to note that the results for Team Fortress 2 are not conclusive,

as we could only monitor a single cheat. For other titles monitored,

with the exception of Rainbow 6 Siege, at least one cheat was up for

100% of the time. Aside from this we noticed a substantial overlap

between the uptime of a cheat for a given title and the technical

strength of its anti-cheat solution, as determined by our ranking in

subsection 6.2.

13
Individual cheat statuses can be found at https://github.com/SamCollins1327/Anti-

Cheat_2024/blob/main/DataSets/status_results.txt

activeplayer.io
https://github.com/SamCollins1327/Anti-Cheat_2024/blob/main/DataSets/status_results.txt
https://github.com/SamCollins1327/Anti-Cheat_2024/blob/main/DataSets/status_results.txt

Anti-Cheat: Attacks and the Effectiveness of Client-Side Defences CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA

Va
lor

an
t

For
tni

te

Batt
lef

ield
 20

42

Ra
inb

ow
 6

Th
e F

ina
ls

Ove
rw

atc
h 2

Ape
x L

eg
en

ds

COD W
arz

on
e

Cou
nte

r S
trik

e 2

Tea
m Fo

rtre
ss

2

Batt
lef

ield
 1

0

20

40

60

80

100

120
Mean Cheat Price ($)
Uptime (%)
Anticheat Rank

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000
Avg Monthly Players

Figure 4: Uptime, mean price, popularity, and anti-cheat rank for analyzed games. Games are ordered by anti-cheat rank.

Table 5: Full set of correlation data. Correlations with an
absolute value above 0.5 are highlighted in bold.

P
r
i
c
e

A
n
t
i
-
c
h
e
a
t

U
p
t
i
m
e
%

P
l
a
y
e
r
s

G
a
m
e
A
g
e

A
v
a
i
l
a
b
i
l
i
t
y

Price 1

Anti-cheat 0.948 1

Uptime % -0.771 -0.765 1

Players -0.101 0.023 -0.373 1

Game Age 0.443 -0.297 0.414 -0.145 1

Availability -0.398 0.358 -0.49 0.476 -0.364 1

We also observe clear events in our data, which often coincide

with game or anti-cheat updates. For instance, representative events

we observed are hotfix 1.4.1 and patch 1.5.0 for The Finals. For the

first, half of the cheats monitored went down within a day of the

patch. A few days later with patch 1.5.0, which mentioned upgrades

to the anti-cheat policy, five cheats went temporarily offline from a

period of two to seven days before being brought online again.

7.3 Results
We show the results of our correlation analysis across the different

features in Table 5. We further visualize core parts of this analysis

in Figure 4. The correlations imply various relationships of different

strengths; we more closely explore two strongest correlations evi-

dent. First we note a significant positive correlation (0.948) between

the price of a cheat and the strength of the anti-cheat. This result

suggests that robust anti-cheat systems do in-fact increase the price

of cheats (i.e., the actual cost for an attacker). Our intuition is that a

technically strong anti-cheat is harder to bypass, leading to greater

development costs, and, therefore, a higher end price.

Second, we observe a strong negative correlation (-0.765) be-

tween anti-cheat strength and cheat uptime. This suggests that

as the strength of an anti-cheat increases, the less time cheats for

that title are up and running. In other words: strong anti-cheats

make cheating more expense for the attacker and less likely to be

functioning at all times.

8 Discussion
Anti-cheats as MATE defenses. In our analysis of anti-cheat so-

lutions, we found widespread use of integrity checking methods

(such as file and memory integrity checks) and hardening methods

(such as obfuscation). Such methods have been widely discussed

in previous work on MATE defenses (e.g., [2, 4, 8, 14, 36]) and our

study provides evidence that they are used, and useful, in practice.

Beyond these methods we found that many anti-cheat systems

use signed code running at the windows kernel level, giving them

an advantage over unsigned cheat code. We also found that cheats

had to be easy to distribute meaning that, for instance, requiring

low level alterations to the OS is not an option for the attacker.

This leads to a more restrictive MATE attacker model than models

considered in past work. This attacker model, and the use of kernel

level protections may be useful when trying to stop MATE attacks

in other areas.

CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA Sam Collins, Alex Poulopoulos, Marius Muench, and Tom Chothia

We further found wide spread use of attempts to identify and

ban cheaters, which is another approach to defend against MATE

attacks which has not widely been studied before. Hardware bans

increase the risk of trying out possible attacks, and they also make

studying the system and developing cheats more difficult, which is

overall increasing the costs for an attacker.

Effectiveness of kernel-level anti-cheats. We showed a strong cor-

relation between the use of kernel level protections and the price

and the downtime of cheats, suggesting that kernel level protec-

tions provide the most effective defense. However, one user level

anti-cheat (for Overwatch 2) scored well in our bench marking,

and has high priced cheats, suggesting that other factors are also

important for the strength of the defense.

Threats to validity. In our market analysis we apply the standard

e-commerce conversion rate, this being the best estimate for traffic

to sales. While game cheats are not a black market, such as various

sites running on onion domains, it is a grey one; cheats are not

explicitly illegal, but sites have been successfully sued. This may

effect the validity of the standard conversion rate.

Additionally, since we gathered much of our information from

user forums and blogs, we cannot grantee that these methods are

used in real cheats. Responses from anti-cheats to our grey box

testing shows that these methods are at least defended against,

further suggesting their use in real cheats.

Last, we deliberately do not account for server side checks in our

methodology, such as machine learning driven in-game behaviour

analysis. Thus, we cannot access their influence on a technical

strength of an anti-cheat. Similar, we use dedicated tests which

are not captured by signature scanning. Thus, we only access the

strength of individual defences and not the full end-to-end detection

capabilities of anti-cheats.

9 Related Work
Cheating in Video Games. Prior work, such as [25, 28, 29], have

discussed game cheats at a high level, outlining the kind of cheat

methods that could be used in general terms, without going into

technical details of the defenses or assessing their effectiveness.

Multiple studies investigate why people cheat in video games,

(e.g., [12, 16]), some suggesting that it is good for mental health

[41], and other work suggesting that it leads to crime [27], however

such speculation is not the focus of our paper.

Pontiroli investigates game cheats from the anti-virus point of

view [42] and how they compare to malware. Karkallis et al. [32]

investigate the injector tools shared by the cheating community,

while Tian et al. [45] study how cheats for mobile games work.

Bursztein et al. [13] present an automated map hack system for real

time strategy games, and a protection method for games based on

distributing game state between players. However, none of these

works systematically analyze contemporary anti-cheat systems or

the overall cheat market.

Anti-Cheat Solutions. Technical discussion forums discuss the

inner workings of anti-cheat systems in great detail. These sites are

aimed at people that want to understand the cheat development

and anti-cheat bypasses, rather than providing cheats to a mass

audience. Such sites contain the best public sources of information

about how anti-cheat systems operate.

Some past work has suggested designs for anti-cheat systems

based on trusted hardware [10, 23, 40]. Anwar et al. [7] used mem-

ory access graphs to detect pointer chains used by cheats and selec-

tively obfuscate key values. Choi et al. [17] have proposed a client

side aimbot detection BotScreen which leverages a machine learn-

ing model to detect abnormal mouse movements. However, as our

examination of anti-cheat system shows, these techniques are not

used in practice yet. To the best of our knowledge, no prior work

extensively analyzed how client-side PC anti-cheat systems work,

ranked their relative effectiveness, or investigated their effects on

the market for game cheats.

10 Conclusion
In this paper we have studied game cheats as a form of MATE attack.

We study the market of game cheats, showing how this substantial

grey market operates and estimating its yearly revenue in Europe

and North America.

We establish a clear attacker model for PC game cheats on Win-

dows, backed by information gathered from game hacking forums.

We use this information to construct grey box tests for the most

salient anti-cheat techniques, then apply these tests to 11 of the

most popular FPS and Battle Royale games to create a ranking of

the technical strength of different anti-cheat solution.

Based on our results, we then analyse the driving factors of cheat

prices. Most importantly, our results suggest that the technical

sturdiness of anti-cheat solutions has a large effect on the price and

uptime of cheats and, hence, a significant real world impact.

References
[1] Video game market. report code 3218, 2023.

[2] Abrath, B., Coppens, B., Broeck, J. V. D., Wyseur, B., Cabutto, A., Falcarin,

P., and Sutter, B. D. Code renewability for native software protection. ACM
Trans. Priv. Secur. 23, 4 (aug 2020).

[3] Akhunzada, A., Sookhak, M., Anuar, N. B., Gani, A., Ahmed, E., Shiraz,

M., Furnell, S., Hayat, A., and Khurram Khan, M. Man-at-the-end attacks:

Analysis, taxonomy, human aspects, motivation and future directions. Journal of
Network and Computer Applications (2015).

[4] Akhunzada, A., Sookhak, M., Anuar, N. B., Gani, A., Ahmed, E., Shiraz,

M., Furnell, S., Hayat, A., and Khurram Khan, M. Man-at-the-end attacks:

Analysis, taxonomy, human aspects, motivation and future directions. Journal of
Network and Computer Applications 48 (2015), 44–57.

[5] Alpha AI. How ai is eliminating cheaters in gaming. https://medium.com/@

Alphapack24/how-ai-is-eliminating-cheaters-in-gaming-da706146f7bf#:~:

text=Cheaters-,1.,thousands%20of%20cheater%20bans%20daily., 2024.

[6] Alsop, T. Distribution of steam gaming platform users operating systems used

as of september 2023.

[7] Anwar, M. S., Zuo, C., Yagemann, C., and Lin, Z. Extracting threat intelligence

from cheat binaries for anti-cheating. In International Symposium on Research in
Attacks, Intrusions and Defenses (RAID) (2023).

[8] Basile, C., De Sutter, B., Canavese, D., Regano, L., and Coppens, B. Design,

implementation, and automation of a risk management approach for man-at-the-

end software protection. Computers & Security 132 (2023), 103321.
[9] Battlefield Wiki. FairFight, 2019. (Online. Accessed 2024-21-02).

[10] Bauman, E., and Lin, Z. A case for protecting computer games with SGX. In

Proceedings of the 1st Workshop on System Software for Trusted Execution (2016).

[11] Benjamin, V., Li, W., Holt, T., and Chen, H. Exploring threats and vulnerabilities

in hacker web: Forums, irc and carding shops. In 2015 IEEE international conference
on intelligence and security informatics (ISI) (2015), IEEE.

[12] Boldi, A., and Rapp, A. “is it legit, to you?”. an exploration of players’ per-

ceptions of cheating in a multiplayer video game: Making sense of uncertainty.

International Journal of Human–Computer Interaction (2023).

[13] Bursztein, E., Hamburg, M., Lagarenne, J., and Boneh, D. Openconflict:

Preventing real time map hacks in online games. In Proc. of IEEE Security and
Privacy (2011).

https://medium.com/@Alphapack24/how-ai-is-eliminating-cheaters-in-gaming-da706146f7bf#:~:text=Cheaters-,1.,thousands%20of%20cheater%20bans%20daily.
https://medium.com/@Alphapack24/how-ai-is-eliminating-cheaters-in-gaming-da706146f7bf#:~:text=Cheaters-,1.,thousands%20of%20cheater%20bans%20daily.
https://medium.com/@Alphapack24/how-ai-is-eliminating-cheaters-in-gaming-da706146f7bf#:~:text=Cheaters-,1.,thousands%20of%20cheater%20bans%20daily.

Anti-Cheat: Attacks and the Effectiveness of Client-Side Defences CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA

[14] Canavese, D., Regano, L., Basile, C., Coppens, B., and Sutter, B. D. Man-at-

the-end software protection as a risk analysis process, 2022.

[15] Chervalie, S. Online shopping conversion rate in selected verticals worldwide

in 2nd quarter 2022. Statista [online] (2022).
[16] Cho, S. A community-based investigation of competitive cheating. In CHI PLAY

(2022), Association for Computing Machinery.

[17] Choi, M., Ko, G., and Cha, S. K. {BotScreen}: Trust everybody, but cut the
aimbots yourself. In 32nd USENIX Security Symposium (USENIX Security 23)
(2023), pp. 481–498.

[18] Clement, J. Share of children who play fortnite in the u.s. 2018.

[19] Collberg, C., Davidson, J., Giacobazzi, R., Gu, Y. X., Herzberg, A., and Wang,

F.-Y. Toward digital asset protection. IEEE Intelligent Systems 26, 6 (2011), 8–13.
[20] Čurda, T. Analysis and detection of online game cheating software. Tech. rep.,

Masaryk University, 2014.

[21] Engelstätter, B., and Ward, M. R. Video games become more mainstream.

Entertainment Computing 42 (2022), 100494.
[22] Falcarin, P., Collberg, C., Atallah, M., and Jakubowski, M. Guest editors’

introduction: Software protection. IEEE Software 28, 2 (2011), 24–27.
[23] Feng, W.-c., Kaiser, E., and Schluessler, T. Stealth measurements for cheat

detection in on-line games. In Proceedings of the 7th ACM SIGCOMMWorkshop
on Network and System Support for Games (New York, NY, USA, 2008), NetGames

’08, Association for Computing Machinery, p. 15–20.

[24] Franceschi-Bicchierai, L. Inside the ‘world’s largest’ video game cheating

empire, https://www.vice.com/en/article/93ywj3/inside-the-worlds-largest-

video-game-cheating-empire. Motherboard, Tech by Vice (2021).
[25] Gjonbalaj, A., Chen, J., Demicco, D., and Prakash, A. Cheating in esports: Prob-

lems and challenges. In 2023 IEEE Gaming, Entertainment, and Media Conference
(GEM) (2023), pp. 1–6.

[26] Good, O. S. Blizzard wins $8 million judgment against overwatch cheat maker.

In Polygon (2017).

[27] Heubl, B. Gaming - hacking. when cheating leads to crime. Engineering &
Technology 15 (2020).

[28] Jeff Yan, J., and Choi, H. Security issues in online games. The Electronic Library,
Vol. 20 No. 2, pp. 125-133. (2002).

[29] Jeng, A. B., and Lee, C. L. A study on online game cheating and the effective

defense. In Recent Trends in Applied Artificial Intelligence (Berlin, Heidelberg,
2013), M. Ali, T. Bosse, K. V. Hindriks, M. Hoogendoorn, C. M. Jonker, and J. Treur,

Eds., Springer Berlin Heidelberg, pp. 518–527.

[30] Kálnai, P., and Havránek, M. Lazarus & byovd: Evil to the windows core.

[31] Kaluarachchi, C. D., Wickramatunga, C. A., and Dewapriya, D. The dark side

of e-sports: The role of player emotions and cyberbullying in moba. International
Conference on Information Systems (ICIS) (2023).

[32] Karkallis, P., Blasco, J., Suarez-Tangil, G., and Pastrana, S. Detecting video-

game injectors exchanged in game cheating communities. In Computer Security
– ESORICS 2021 (2021), E. Bertino, H. Shulman, and M. Waidner, Eds.

[33] Kotwani, B. What is vacnet, a deep learning product of cs:go’s overwatch?,

https://www.talkesport.com/news/what-is-vacnet-a-deep-learning-product-

of-csgos-overwatch/. TalkEsport (2020).
[34] Kumar, A. Csgo wallhack golang. https://github.com/aditkumar1/csgo-wallhack-

golang, 2022.

[35] Lewis Galoob Toys, Inc. v Nintendo of America, Inc. 964 F.2d 965 (9th Cir.).

https://law.justia.com/cases/federal/appellate-courts/F2/964/965/341457/, 1992.

[36] Manikyam, R., McDonald, J. T., Mahoney, W. R., Andel, T. R., and Russ, S. H.

Comparing the effectiveness of commercial obfuscators against mate attacks.

In Proceedings of the 6th Workshop on Software Security, Protection, and Reverse
Engineering (New York, NY, USA, 2016), SSPREW ’16, Association for Computing

Machinery.

[37] Mayra Rosario Fuentes and Fernando Mercês. Cheats, Hacks, and Cyber-

attacks. Threats to the Esports Industry in 2019 and Beyond. Tech. rep., Trend

Micro, 2019.

[38] Microsoft. Windows kernel-mode vs user-mode. https://learn.microsoft.com/

en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode,

2023.

[39] Orland, K. Judge dismisses “insufficient”’ copyright claims in destiny 2 cheating

case, https://arstechnica.com/gaming/2022/05/judge-dismisses-insufficient-

copyright-claims-in-destiny-2-cheating-case/. Ars Technica (2023).
[40] Park, S., Ahmad, A., and Lee, B. Blackmirror: Preventing wallhacks in 3d online

fps games. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (New York, NY, USA, 2020), CCS ’20, Association for

Computing Machinery, p. 987–1000.

[41] Passmore, C. J., Miller, M. K., Liu, J., Phillips, C. J., and Mandryk, R. L. A

cheating mood: The emotional and psychological benefits of cheating in single-

player games. In Proceedings of the Annual Symposium on Computer-Human
Interaction in Play (2020), CHI PLAY ’20.

[42] Pontiroli, S. The Cake is a Lie! Uncovering The Secret World of Malware-Like

Chears in Video Games. Virus Bulletin (2019).

[43] Rohit Shewale. Fortnite Statistics For 2024 (Active Players, Revenue & More),

2023. (Online. Accessed 2024-21-02).

[44] Spijkerman, R., and Marie Ehlers, E. Cheat detection in a multiplayer first-

person shooter using artificial intelligence tools. In Proceedings of the 2020 3rd
International Conference on Computational Intelligence and Intelligent Systems
(New York, NY, USA, 2021), CIIS ’20, Association for Computing Machinery,

p. 87–92.

[45] Tian, Y., Chen, E., Ma, X., Chen, S., Wang, X., and Tague, P. Swords and shields:

A study of mobile game hacks and existing defenses. In ACSAC ’16 (2016).
[46] Vernace, M. Bungie vs. cheaters: The sequel. In thegamepost.com (2023).

[47] vmcall. Why anti-cheat software utilize kernel drivers, 2023. (Online. Accessed

2024-22-02).

[48] Wilde, T. The controversy over Riot’s Vanguard anti-cheat software, explained,

2020.

[49] Wood, A. Bungie wins another lawsuit against destiny 2 cheat-makers. In

IGN.COM (2023).

https://www.vice.com/en/article/93ywj3/inside-the-worlds-largest-video-game-cheating-empire
https://www.vice.com/en/article/93ywj3/inside-the-worlds-largest-video-game-cheating-empire
https://www.talkesport.com/news/what-is-vacnet-a-deep-learning-product-of-csgos-overwatch/
https://www.talkesport.com/news/what-is-vacnet-a-deep-learning-product-of-csgos-overwatch/
https://github.com/aditkumar1/csgo-wallhack-golang
https://github.com/aditkumar1/csgo-wallhack-golang
https://law.justia.com/cases/federal/appellate-courts/F2/964/965/341457/
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://arstechnica.com/gaming/2022/05/judge-dismisses-insufficient-copyright-claims-in-destiny-2-cheating-case/
https://arstechnica.com/gaming/2022/05/judge-dismisses-insufficient-copyright-claims-in-destiny-2-cheating-case/

CheckMATE ’24, October 14–18, 2024, Salt Lake City, UT, USA Sam Collins, Alex Poulopoulos, Marius Muench, and Tom Chothia

Appendices
A Test Descriptions
In the following, we list our bench mark experiments to assess the

presence of different anti-cheat approaches.

Player Identification
P1 - Account Bans. We check that each service bans players

if they are detected to be cheating. While this is a baseline

test, it is important for completeness. In some cases we were

not banned from games even following our “best efforts”.

Thus, we also include second hand information from the

provider as results here.

P2 - Hardware ID. We collect a list of theHardware ID (HWID)

information gathered by each anti-cheat used in its HWID

based bans via the Windows Management Instrumentation

(WMI) trace functionality. We also consider how detailed the

collected information are in our ranking.

Integrity
I1 - File Integrity. We assess weather or not the anti-cheat

runs file integrity checks. This should be one of the most

basic defenses run. We test this by patching the game binary

via IDA and then running the game.

I2 - Run-time memory checks. Omitted from testing in iso-

lation.

I3 - Code injection. Our testing against code injection coun-

termeasures for each anti-cheat solution is subdivided into

three tests:

(1) We attempt standard code injection, by allocating memory

within the process then calling LoadLibraryA on our DLL

using loadlibraryinjector.exe and Dll1.dll.

(2) We attempt manually mapping our code into the game

process using Extreme Injector v3.exe and Dll2.dll.

(3) We try injection via thread hijacking using Extreme Injector

v3.exe and Dll3.dll.

In all cases we injected harmless “hello world” code and ran

a game in case injection succeeded.

Game Hardening
H1 - Obfuscation. Wemanually check if important game files

are obfuscated in any way. To do this we use binwalk to

measure and record the entropy of the main PE file for each

game.

H2 - Debugging. To check for the presence of simple anti de-

bug techniques we attach GDB to the running game process.

Additionally, if we can attach Cheat Engine to the game pro-

cess, we then also attach the Cheat Engine debugger. In all

cases the reaction to both debuggers was identical. We note

a clear direction for future work in this test case would be

to measure reactions to more advanced debuggers, such as

scyllahide and titanhide for x64dbg, as well as hypervisor

based debuggers like hyperdbg.

H3 - Process scanning. We test weather the anti-cheat is enu-

merating running processes and open windows. This is fur-

ther divided into two sub-cases for two common reverse

engineering tools: (1) IDA, and (2) Cheat Engine. Thus, we

define two subtests:

(1) We open the IDA static analysis tool, load an executable

not associated with the game, then run the game. We see

if the game opens or not and if any warnings are given.

This is to test if the anti-cheat is checking open processes,

and flags the use of IDA as a possible threat.

(2) We start Cheat Engine and then open the game. If the

game opens we attach Cheat Engine to the game process.

Cheat Engine is a dynamic analysis tool for which the

game must be running.

Kernel-level protection
K1 - Test Mode. We test if the game will run on Windows

with test signing enabled (Bcdedit.exe -set TESTSIGNING

ON). If allowed, this would allow an attacker to load their

own unsigned kernel drivers to arbitrarily cheat in the game.

K2 - Vulnerable Drivers. We load the widely known to be

vulnerable iqvw64e.sys driver on the target machine before

opening and playing the game. We use a modified version of

KDMapper (kdmapper_no_unload.exe) which does not unload

the vulnerable driver post injection. This tests whether the

anti-cheat will check loaded drivers for known vulnerable

software.

K3 - Kernel Injection. We first open the game, and then use

KDMapper (kdmapper.exe) and iqvw64e.sys to inject an entry-

only driver into the kernel (HelloWorld_EntryOnly.sys) This

checks if the anti-cheat can detect an injection at the kernel

level during run time, and if it takes any action regardless

the content of the driver.

K4 - Module Detection. Using KDMapper (kdmapper.exe) and

iqvw64e.sys, we inject a more advancedmalicious driver into

the kernel (HelloWorld_WithThread.sys) before starting the

game. This driver starts a single thread, closes the command

line and unloads iqvw64e.sys. With this test, we evaluate

weather an anti-cheat can locate the manually mapped dri-

ver without the vulnerable kernel driver present or having

observed the injection.

	Abstract
	1 Introduction
	2 Background
	2.1 MATE attacks
	2.2 Windows Internals & Privilege Levels
	2.3 Cheating in Competitive Shooter Games
	2.4 Cheat Development & Game Hacking Methods

	3 Attacker Model
	4 Analysing the Video Game Cheat Market
	4.1 Methodology and Dataset
	4.2 Operational Aspects of Cheat Distribution Platforms
	4.3 Legal Status of Game Cheats
	4.4 Market Size and Revenue of Video Game Cheats

	5 Taxonomizing Anti-Cheat Technology
	5.1 Methodology
	5.2 Data Set
	5.3 Classification of Anti-cheat Techniques

	6 Technical Sturdiness of Anti-cheat Systems
	6.1 Test Definition & Benchmarks Used
	6.2 Results

	7 The Effect of Technical Sturdiness of Anti-Cheats
	7.1 Methodology
	7.2 Cheat Downtime
	7.3 Results

	8 Discussion
	9 Related Work
	10 Conclusion
	References
	A Test Descriptions

