
Symbolic modelling of remote attestation protocols for device
and app integrity on Android

Abdulla Aldoseri
axa1170@bham.ac.uk

University of Birmingham, University of Bahrain
United Kingdom

Tom Chothia
t.p.chothia@bham.ac.uk
University of Birmingham

United Kingdom

José Moreira
jose.moreira.sanchez@valory.xyz

Valory AG, Zug
Switzerland

David Oswald
d.f .oswald@bham.ac.uk
University of Birmingham

United Kingdom

ABSTRACT
Ensuring the integrity of a remote app or device is one of the most
challenging concerns for the Android ecosystem. Software-based
solutions provide limited protection and can usually be circum-
vented by repacking the mobile app or rooting the device. Newer
protocols use trusted hardware to provide stronger remote attes-
tation guarantees, e.g., Google SafetyNet, Samsung Knox (V2 and
V3 attestation), and Android Key Attestation. So far, the protocols
used by these systems have received relatively little attention. In
this paper, we formally model these platforms using the Tamarin
Prover and verify their security properties in the symbolic model of
cryptography, revealing two vulnerabilities: we found a relay attack
against Samsung Knox V2 that allows a malicious app to masquer-
ade as an honest app, and an error in the recommended use case
for Android Key Attestation that means that old—possibly out of
date—attestations can be replayed. We employed our findings and
the modelled platforms to tackle one of the most challenging prob-
lems in Android security, namely code protection, proposing and
formally modelling a code protection scheme that ensures source
code protection for mobile apps using a hardware root of trust.

CCS CONCEPTS
• Security and privacy→ Formal security models; Security services;
Formal methods and theory of security.

KEYWORDS
Remote attestation, Android apps, App integrity, Device integrity,
Root detection

ACM Reference Format:
Abdulla Aldoseri, Tom Chothia, José Moreira, and David Oswald. 2023. Sym-
bolic modelling of remote attestation protocols for device and app integrity
on Android. In ACM ASIA Conference on Computer and Communications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0098-9/23/07. . . $15.00
https://doi.org/10.1145/3579856.3582812

Security (ASIA CCS ’23), July 10–14, 2023, Melbourne, VIC, Australia. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3579856.3582812

1 INTRODUCTION
One of the major issues confronting the mobile development indus-
try today is ensuring the integrity of a mobile app and its device.
Failing to achieve these security goals might introduce issues for
the app’s user and the developer. For instance, sensitive apps (e.g.,
banking and payment) often check the integrity of their code and
the mobile operating device using various techniques to avoid in-
formation leakage [35], e.g., on a rooted device. Similarly, in mobile
gaming, evading integrity checks may enable cheating. Nguyen Vu
et al. analysed over 28,000 apps, including mobile banking apps.
They conclude that most root detection techniques are bypass-
able [35], even though Android provides a variety of dedicated
mechanisms to safeguard contents and data, such as Digital Right
Management (DRM) and the Android Keystore [23]. Android’s ar-
chitecture implies that mobile apps only run in “normal” userspace
(and not e.g., ARM TrustZone), thus easily allowing static and dy-
namic attacks (e.g., reverse engineering, repacking, and debugging)
to circumvent integrity checks [6].

Several researchers have proposed software solutions to preserve
the integrity of apps and their host devices [14, 32, 46, 47]. However,
these software defences can usually be bypassed [35], creating a
cat-and-mouse game. Hence, these measures increase the difficulty
of app tampering, rather than stopping it. More recently, Samsung
Knox [44] and Google SafetyNet [24] have introduced a hardware
root of trust for attestation, promising much stronger app integrity
guarantees. However, their security claims remain largely untested.

In this paper, we examine Samsung Knox, versions 2 and 3,
Google SafetyNet, and Android Key Attestation, systematise the
problem space of app attestation, and evaluate their corresponding
methods symbolically. In order to prove (or disprove) the correct-
ness of app/device integrity checks with hardware-backed remote
attestation on Android, we formally model and verify them us-
ing the Tamarin Prover [13, 33] and its front-end SAPiC [30]. As
not all the considered protocols are fully open, in some cases, we
performed symbolic verification based on the publicly available
documentation or source code samples.

The novelty of our framework is represented in our way of mod-
elling devices and apps. Each device has a secure world that models
the cryptographic operations of the platform, app fingerprinting,

https://orcid.org/0000-0002-4959-6832
https://orcid.org/0000-0002-3210-4504
https://doi.org/10.1145/3579856.3582812
https://doi.org/10.1145/3579856.3582812

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Abdulla Aldoseri, Tom Chothia, José Moreira, and David Oswald

and measuring its integrity. Only apps installed on the device can
access their secure world. Our framework includes two types of
apps: “honest” and “arbitrary”. Honest apps are explicitly modelled
as a Tamarin process and have a fixed, known fingerprint. In con-
trast, arbitrary apps may be controlled by attackers. These apps
can still access the secure world, but importantly cannot control
their fingerprint. Therefore, they cannot trick the secure world into
attesting them as an honest app.

The framework presented in this work verifies the overall se-
curity of attestation platforms. Additionally, it can check general
security properties of the attestation platforms (e.g., if there is a
way for any app to incorrectly attest using Samsung Knox V2), and
check the security properties of particular apps that use an attesta-
tion platform (e.g., does the design of an app, which uses Google
SafetyNet, keep a particular value secure). Therefore, developers
can use this framework to evaluate the security of their apps.

The security assumptions made during the design of remote
attestation platforms are often subtle and sometimes not stated. For
example, all frameworks implicitly assume that the devices cannot
be rooted at runtime via, for instance a bug in the Android kernel.
Another important assumption is that unlocking the bootloader
of an Android phone will wipe the apps installed on it [4]. We
investigate and state these assumptions, and include them into our
attacker model.

Our analysis of the platforms reveals that Samsung’s Knox V2
attestation fails to satisfy the device integrity security property,
allowing an arbitrary app on a tampered device to relay an attes-
tation statement from a second unrooted device and pass this off
as its own. While studying the security of Android Key Attesta-
tion, we found that the challenge phase is missing in the official
recommended practice of the protocol. This does not guarantee the
freshness of the attestation. This means that an app can return an
arbitrarily old attestation statement to any challenge, which may
not accurately reflect the current state of the device. While the only
default fresh values in the attestation is system time and the public
key, both cannot guarantee the freshness of the statement. This is
because the system time is an attacker-controlled value and not
part of the secure world, while the key is not a known challenge
value by the developer. In summary, our main contributions are:

• We analyse remote attestation protocols and develop an
attacker model that captures their assumptions.

• We perform symbolic verification of common remote attesta-
tion protocols, namely Samsung Knox attestation V2 and V3,
Google Android Key Attestation, Google SafetyNet, using
the Tamarin Prover, leading to a framework that can be used
by others to check the security properties of apps that use
attestation platforms. We show this by modelling attested
key exchange protocol and code protection protocol.

• Based on these models, we show that the device integrity
check in Knox V2 remote attestation is flawed. We also
demonstrate a freshness issue in the recommended use of
Android Key Attestation.

• We employ the models to present a real-world case study
on code protection for Android apps, which stops attackers
that cannot root the device at runtime, without rebooting.

We provide all our open source artefacts, symbolic models and
a demo video for running code protection on Android at https:
//akaldoseri.github.io/modelling_android_ra/

Responsible disclosure. We reported the issue of Samsung at-
testation V2 to Samsung in August 2020. Samsung confirmed the
issue theoretically and stated that it has been fixed in Samsung
attestation V3, which we can confirm with our models. Samsung
requested a proof-of-concept as part of their reporting process. We
were unable to create this because the Knox SDK is only available
under a non-disclosure agreement. In a follow-up discussion, Sam-
sung told us that they were deprecating V2 in the latest OS and
that only V3 can be used with Android 13 (released August 2022).

We reported the issue in Android Key Attestation to Google in
November 2021, who have accepted the issues and responded that
they have fixed the Key Attestation documentation, which will be
available in a future release. The issue can be tracked on Android
public tracker via https://issuetracker.google.com/205589624.

2 BACKGROUND
Android device architecture. Android devices consist of two

worlds: the normal world (untrusted) and the secure world (trusted).
The Android OS and mobile apps operate in the normal world.
They have access to the majority of the device’s resources (e.g.,
display, storage and sensors). The secure world offers a Trusted
Execution Environment (TEE) for Android devices [6]. It provides
secure cryptographic operations offered to trusted apps (Trustlets).
This enables data sensitive services to operate securely in Android
devices such as NFC payments and fingerprint authentication.

Tampering with Android applications. Because mobile apps
are considered untrusted entities, they are installed in the normal
world (Android OS). Android enforces app signature verification for
each app prior to installing it. This policy ensures that an app must
be signed by a key to be installable. The app signature is generated
by signing the app code base, its resources and the public key
certificate of the signing key. Both the signature and the certificate
are attached to the app for verification at installation time [3].
The Android package installer performs signature verification and
assures the app validity before installing it. It is advantageous to
sign apps with the same certificate for data sharing and permissions
access (e.g., system apps utilise this feature to access high-level
permissions and restrict them from third-party apps).

The signature verification process does not authenticate the apps
(i.e., verifying the developer’s ownership of the app). Thus it al-
lows stripping the apps’ signatures and certificates to change their
content, re-sign them, and re-install them on devices. We refer to
this practice as “application repacking” or “application tampering”.
Furthermore, Android stores mobile apps in a public directory on
the data partition, making the repacking process a core challenge to
application integrity checks and anti-repacking solutions. Because
of this, adversaries not only can extract the apps’ code, but they
can also perform dynamic analysis and debug the apps. In contrast,
trusted apps have tamper resistance protection. They can be ex-
tracted on a compromised OS, but only signed versions of them by
OEM keys are eligible to be installed.

https://akaldoseri.github.io/modelling_android_ra/
https://akaldoseri.github.io/modelling_android_ra/
https://issuetracker.google.com/205589624

Symbolic modelling of remote attestation protocols for device and app integrity on Android ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Verified boot and device tampering. The bootloader is locked
on the majority of OEM Android device types, e.g., Samsung and
Google’s Pixel. This prevents users from flashing arbitrary custom
bootloader software or executables into device partitions. Neverthe-
less, OEM vendors can flash verified executables, such as Android
OS, that have been signed with OEM keys. The verified boot vali-
dates the authenticity and integrity of the flashed components. It
operates when the device boots up. It establishes a chain of trust
starting with a hardware-protection root of trust and progressing
through the bootloader to verify device partitions including boot,
system, vendor, and optionally OEM partitions [7].

The latest Android devices support unlocking the bootloader
through the UnlockOEM system option [4]. This allows flashing exe-
cutables into them, regardless of their signature, which allows full
control over their normal world (Android OS), their data, apps, and
resources. We refer to this process as “device tampering”, as it voids
the integrity of OEM devices. This issue poses a crucial challenge to
identify the status of these devices, because tampered devices can
behave as non-tampered devices. Therefore, to ensure detecting
such a tampering, OEM devices keep track of the status of these de-
vices and their bootloader. For instance, most Google-based devices
keep track of the status of their bootloader and verified boot by
storing them in tamper-resistant storage in the secure world [8]. Ad-
ditionally, unlocking/locking the bootloader of devices, completely
factory resets them [4]. This prevents adversaries from accessing
the devices’ data after unlocking/locking their bootloader. Samsung
additionally uses a special one-time programmable warranty bit
that is set when their devices have been tampered . This disables
data-sensitive apps and services [39].

Remote attestation. Remote attestation (RA) is a mechanism
that provides an authentic, timely report for a third-party entity
(known as a challenger) about the validity of the attested plat-
form. [17]. It is based on a typical challenge-response protocol. The
protocol begins with a mobile app that requests a measurement
report from a trusted entity (e.g., a trustlet). The report includes
measurements and information about the device’s status and the
requester app info, if applicable. In certain implementations, device
information is saved in tamper-resistant storage in secure hard-
ware (e.g., Android Key Attestation). The report is signed with a
per-device private key and sent to a remote server to be verified
for its authenticity and integrity via the requester app. Finally, the
server decides to either trust the device and continue to communi-
cate with it or not [24, 41, 43].

On Android, there are several generic and vendor-specific im-
plementations for remote attestation (e.g., Samsung Knox remote
attestation [41, 43], Google SafetyNet [24] and Android Key At-
testation [8]). Older versions of SafetyNet were software-based.
Therefore, they were bypassable in a compromised OS [15, 29].
However, the recent versions rely on a hardware root of trust simi-
lar to Samsung Knox and Android Key Attestation.

ModellingwithTamarin and SAPiC. Wehave used the Tamarin
Prover [13, 33] and its front-end SAPiC [30] for modelling. Tamarin
is a state-of-the-art tool used to verify the security properties of
protocols in the symbolic modelling of cryptography (the Dolev-
Yao model [20]). SAPiC allows modelling protocols in (a dialect of)

the applied pi-calculus [1], and converts the processes specifica-
tion into multiset rewrite rules (MSRs) that can be processed by
Tamarin. Everything that SAPiC does can be expressed in MSRs in
Tamarin. However, SAPiC provides a convenient encoding (e.g., for
locks, reliable channels, and state handling). Security properties are
expressed as first-order logic formulas, Tamarin then determines if
the protocol expressed as MSRs satisfies such properties.

Dolev-Yao adversaries have absolute control over the public
channel: they are free to intercept, forward, delay, drop, rearrange
the order or modify (via public function symbols) any message in
that channel. The public channel represents communication over
insecure networks. This is achieved by the SAPiC constructs Out(𝑚
) and In(𝑚) for sending and receiving messages to/from the public
channel. There are several alternatives to model communications
over private channels. We have opted to use the SAPiC construct
that allows giving access to Tamarin MSRs directly: [] −[]→
[SEND(𝑠𝑒𝑐𝑟𝑒𝑡)] for sending a message and [SEND(𝑠𝑒𝑐𝑟𝑒𝑡)] −[]→
[] for receiving it. For further details about Tamarin and the SAPiC
syntax, please see appendix B or refer to [13, 30].

3 RELATEDWORK
Several solutions have been proposed to ensure the integrity of ap-
plications and Android devices. We categorised them into software-
based and hardware-based techniques.

Software-based device and app integrity techniques. Berlato
andCeccato performed a survey for anti-debugging and anti-tampering
techniques for mobile apps. The techniques presented are mainly
software-based, which include emulator detection, dynamic analy-
sis framework detection, and debugger detection [14]. Additional
device tampering techniques are introduced in [47]. Other solutions
rely on app hardening to hinder tampering, Android Studio uses
ProGuard and R8 (in recent Gradle versions) to obfuscate mobile
apps by renaming parts of the app’s source code. Such an operation
complicates the apps modification, making reverse engineering
them a difficult task [5]. DexGuard is based on ProGuard with some
enhancements which include code encryption [25]. Yuxue Piao
et al. find that DexGuard’s code encryption is hard-coded within
the app [49]. AppIS [46] aims to protect apps against modification
by inserting “guards” at random locations throughout the code
and checking the hash of certain regions of the apps. Removing
the guards one by one and repacking the mobile app is difficult,
since the guards’ locations are dynamically changed in each run.
Finally, OWASP suggests using a combination of different (imper-
fect) software-based approaches to frustrate adversary attempts to
tamper with apps [37].

The major drawbacks of these software based methods are re-
lated to the core design issues of Android (app tampering and device
tampering), which are discussed in section 2. The proposed solu-
tions are based on querying a fundamentally untrusted host (the
Android OS) about its status and assessing the result within the app.
However, an untrusted host might be compromised and provide an
inaccurate status, e.g., by overriding relevant methods with frame-
works such as Xposed, Cydia Substrate, or Frida. Furthermore, as
mentioned in section 2, in-app checks may be removed from the
app prior to their execution.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Abdulla Aldoseri, Tom Chothia, José Moreira, and David Oswald

Hardware-based device and app integrity techniques. Hardware-
based techniques offer more assurance than software based tech-
niques. However, because they rely on attestation, they can only
inform developers about the status of devices at the time of the
request, which may be altered if the devices are compromised later.
Namely, attestation only guarantees that at some point between
the attestation request and the verification of the attestation re-
port, the device was in a trustworthy state. In such a circumstance,
continuous detection is required. As discussed in section 2, these
solutions (i.e., Google SafetyNet, Samsung Knox remote attestation
and Android Key Attestation) rely on trusted components in the
secure world (trusted apps) to assess the integrity of the devices and
apps that they run. Kozyrakis and Census lab analyse the security
of SafetyNet (software-based) versions and showed how to bypass
its protections [15, 29]. SafetyNet has introduced hardware mea-
surements to overcome these issues. Ibrahim et al. [26] evaluate the
misuse of SafetyNet on mobile apps. But the study did not find any
weaknesses in SafetyNet’s core implementation. Samsung Knox
remote attestation V2 and V3 are similar systems that ensure device
integrity of Samsung devices and, for V3 only, the apps. Finally,
Android Key Attestation is an Android technique that uses the An-
droid Keymaster to attest a hardware key, in addition to providing
application and device integrity.

Modelling remote attestation. Fotiadis et al. present a symbolic
abstraction for TPM-based remote attestation protocols to verify
the integrity of network attached devices (e.g., routers) [22]. Their
work only looks at the attestation of devices and does not consider
individual apps, or attacker apps running on the same device as
honest apps.

De Oliveira Nunes et al. discussed a design and verification for
a hybrid (hardware/software) remote attestation protocol for em-
bedded devices named VRASED [36]. They conclude that software-
based approaches (e.g., Viper [31] and Pioneer [45]) are not suitable
for such a case. Based on that work, de Oliveira Nunes et al. extend
VRASED to include additional functionality, e.g., software update.
Similarly, for embedded devices, they chose to focus on a more
specific problem in remote attestation, which is time-of-check to
time-of-use issues [19].

Jacomme et al. [27] present a reporting capability for SAPiC to
create and verify a cryptographic report in an isolated execution
environment IEE (e.g., Intel SGX, ARM TrustZone). Processes mod-
elling IEEs are given a unique identifier (called a location). These
processes can produce reports bounded to the named location. Then,
an external party can verify that a given report was produced in-
side a given location. They show the feasibility of their approach
through several case studies, including attested computation and
the OTP protocol.

Our work uses this reporting mechanism but includes a frame-
work to allow the attestation of apps outside of the trusted com-
puting base, the hardware measurements and rooted devices that
allow the attacker to give false information to the trusted hardware.
Our framework models the installation of multiple applications in
the same device, including both honest app and arbitrary/attacker
apps. These extensions make it possible for us to model how leading
attestation platforms work and analyse their security.

Unlike our work, Jacomme et al.’s [27] framework is aimed at
modelling IEEs where the code runs inside the trusted hardware.
Such hardware-based solutions (e.g., Intel SGX, ARM TrustZone)
are promising, however, both Intel SGX and ARMTrustZone are not
fully accessible to third-party Android applications. VRASED [36]
considers the architecture of low level IoT devices (i.e., the MSP430
microcontroller). While, we consider Android architecture without
any modification to its system, hardware level services and features.

Code protection. In section 7, we demonstrate the effective-
ness of the modelled protocols’ framework by solving a real world
problem namely app’s code protection. The problem is challenging
because Android OS lacks protection for apps’ source code. Over
the years, several studies proposed source code protection solutions.
This section discusses them while pointing out their drawbacks.

First, Faruki et al. [21] conducted a survey that illustrates differ-
ent code protection techniques used by malwares. The techniques
are varied like obfuscation, encryption, stenography and packaging
using either custom tools or off-the-shelf tools like Progaurd, Dex-
Guard and APKProtect packer. Among the obfuscation techniques
is DexPro, which is a byte level obfuscator for Android apps that
obfuscates the program control flow by inserting opaque predicates
before the return instruction of function calls [50]. Such complex-
ity makes it harder for an attacker to trace protected calls. Kim
et al. [28] enhanced Android packers tools Bangcle, Ijiami and Li-
app, to protect multidexing apps. They do this by decrypting dex
files of the app at runtime, performing a kind of dynamic code
loading, which is widely used in packer tools.

The dynamic code loading approach relies on excluding partial
parts of the application’s source code from the application and safe-
guarding them in a particular place (e.g., remote server or encrypted
locally). Then, retrieving these parts at application runtime. Tanner
et al. proposed a repacking protection architecture that verifies the
application integrity at runtime and decrypts encrypted bytecode
sections of an app using a derived key at runtime [48]. Utilising
remote features, Google dynamic delivery is based on dynamic code
loading. It allows certain app functionality to be downloaded condi-
tionally or on-demand by splitting a mobile app into a base module
and feature modules [2]. The base is the application’s core, and it
may conditionally request feature modules from Google servers.

None of these solutions change the Android OS architecture
guarantees. Android OS only permits mobile applications to op-
erate in the untrusted section of the device, allowing static and
dynamic analysis techniques (e.g., reverse engineering, applications
repacking and debugging) to uncover their source code [21, 34].
Overall these proposed solutions are software-based similar to the
techniques addressed at the beginning of section 3. They share
similar limitations as they increase the difficulty of apps’ reverse-
engineering but do not prevent it. Therefore, in section 7, we pro-
pose a hardware-based code protection protocol that overcomes
these limitations and provides trust level protection using trusted
hardware.

4 AN ATTACKER MODEL FOR REMOTE
ATTESTATION PLATFORMS

The security assumptions made during the design of remote attes-
tation platforms are often subtle and sometimes not stated. In this

Symbolic modelling of remote attestation protocols for device and app integrity on Android ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

section, we analyse the design of the attestation systems and iden-
tify these assumptions. Then, we state our attacker model, which
we use in the formal modelling section.

Design assumptions. We considered the following assump-
tions to model remote attestation protocols. These assumptions are
based on the behaviour of Android OS and the remote attestation
protocols’ public documentation. First, in terms of tampering with
devices e.g., rooting, it is assumed that tampering can only occur
by unlocking the bootloader when the device is powered off [4].
We are not considering tampering to occur at run time as this could
result in leaking the data of a previously locked device. Addition-
ally, changing the bootloader’s status (e.g., unlock/lock) will factory
reset the device [4]. Compromising a Samsung-based device will
set a special Knox warranty bit and trigger appropriate reactions.
It will block access to any keys stored in TrustZone and functions
that rely on Knox security [39, 40].

Second, we assume that application tampering is feasible, which
includes supplying malicious apps and repacking apps. Third, we
assume that the hardware root of trust that manages the attes-
tation is secured from all software-based attacks and cannot be
broken by hardware-based attacks. Finally, in terms of network
communication that involves attested apps, the official documenta-
tion states that the protocols should run over a secure channel like
HTTPS [24, 44]. However, this will not prevent a local adversary
from obtaining messages before sending/receiving them through
the network.

We note that these are strong assumptions, which may not al-
ways hold. For instance, a vulnerability in the Android kernel would
allow rooting a device without restarting, and implementation at-
tacks (e.g., fault injection [16]) may be able to extract keys from the
trusted hardware. However, these are the assumptions on which
the attestation platforms are built, so we include them in our model.

The effect of extracting keys from the secure world would com-
pletely remove any protection an attestation platform offers. Being
able to root the device while it is running would let an attacker
attest a non-tampered device, and then root the device so, while
less powerful, this would still probably lead to a complete compro-
mise of a single instance of an app. Unlocking the device without
a factory reset would allow an attacker to learn long term secrets
stored on the device, however, a well-designed app that always
attested the device and did not store secrets in long term memory
might still be secure. In terms of Samsung devices, Samsung tamper
detection relies on Real-time Kernel Protection (RKP), which moni-
tors the integrity of the kernel [42]. However, vulnerabilities that
trick the kernel into changing its own memory are beyond RKP
protection [11]. In such a case, tampering will not be detected and
may cause a similar impact to compromising the Android kernel
addressed above.

Attacker model. Since these protocols ensure the integrity of
devices and applications, we consider a threat model that consists
of two adversaries: physical adversary and network adversary. The
physical adversary has access to devices and can tamper with them
(i.e., unlock their bootloader and root them), tamper with apps (i.e.,
has access to mobile apps) including installing honest apps or their
own repacked apps as addressed in section 2, and communicate with
the attestation endpoints (e.g., developers servers). For the network

adversary, we consider a Delov-Yao adversary that can intercept
messages in the network [20]. Honest apps can be retrieved from
secure channels (i.e., representing a trust source like an honest app’
developer or an app marketplace). On the other hand, an adversary
can intercept network traffic in a tampered device or tampered
app before sending it to developers’ servers. The adversary aims to
bypass either the app integrity check or device integrity or both
to continue communicating with the developer server to retrieve
sensitive information that should only be obtained by verified,
attested devices and apps.

5 MODELLING REMOTE ATTESTATION
PLATFORMS

We consider all Android device-specific remote attestation protocols
that rely on hardware-level protection namely: Google SafetyNet
(Software and hardware), Samsung Knox remote attestation (V2 and
V3), and Android Key Attestation. Google’s software-based Safe-
tyNet is included to ensure our models can detect known software-
based issues.

We chose the Tamarin Prover and its process calculus SAPiC to
model the protocols. Its syntax allows us to model protocols as sets
of rules and processes. It supports both falsification and unbounded
verification of security properties expressed as lemmas [30].

5.1 Modelling SafetyNet and Samsung Knox
attestation

Most of the attestation protocols take a similar flow. Five parties are
involved in the attestation process, an app, an attestation’s client,
an attestation’s trusted app, a developer server and an attestation
server. Figure 1 shows a generic attestation flow that represents
Samsung Knox and SafetyNet, while Key Attestation is illustrated
in Fig. 2. Their technical details and differences are addressed in
their formal models.

The setup phase, highlighted in dotted boxes in Fig. 1, represents
the keys setup and the creation of an app that utilises a remote
attestation protocol.

Setup

Attestation's
trusted app

Attestation's client
(System level)

Get nonce

App Attestation
serverDeveloper's server

Get nonce

Blob

NA

Blob

NA

Blob, NA Blob, NA

v
(success/fail)

Device Internet

Protocol Continue ..

Trustzone Android OS

a = <Pkg, σ>
d = <device status>
s = <NA,a,d>
Blob =<SignPrivAk(s),s>

NA ∈ R {0,1}32

NA NA

app = <Pkg,
content, PupDk,σ>

PrivAk,
CertRoot(PubAk)

CertRoot(PubAk)PrivDk,PupDk
σ = SignPrivDk(App)

v = Check Blob

Protocol
flow

Figure 1: Generic flow of remote attestation protocols for
SafetyNet, Knox V2, and Knox V3 based on [24, 41, 43]

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Abdulla Aldoseri, Tom Chothia, José Moreira, and David Oswald

Setup phase. Each vendor sets up its private key in the secure
world and the attestation server. Samsung’s and Google’s documen-
tation do not providemuch detail on how such a set-up is performed,
therefore, we abstract the process based on our best understanding
of the available source code and documentation [24, 39, 43], which
goes as follows:

Each device contains an attestation key based on a key pair
certificate (PrivAk and CertRoot(PubAk)). The certificate is signed
with a root certificate that is available on the attestation server.
Hence, data signed by the attestation’s trusted app can be verified
by the attestation server.

The developer creates an app, which has source code and re-
sources, which are denoted by content, and package name Pkg. The
developer signs the application (including it source code and its
resources) using its developer key PrivDk. The signing process at-
taches the public certificate of the developer key PupDk to the app
to create the application signature o. The Android package installer
can verify the application signature when installing it on the device.

Protocol flow. The protocol runs as follows:
• Mobile apps request a nonce Na from the developer server.
• Na can either be generated by the developer server or the
attestation server. Its purpose is to ensure the freshness of
the attestation reports’ content (i.e., device integrity and
application integrity).

• Na is transferred to the app, which passes it to the attestation
client on the device (Google Play service in SafetyNet, Attes-
tation agent in Knox). This makes a request to the attestation
trusted app in the TrustZone to initiate the attestation.

• The attestation trusted app creates a report Blob containing
the Na, device integrity information deviceStatus d and, app
integrity information a (i.e., package name Pkg and the appli-
cation’s signature o). Then, it signs them with an attestation
key PrivAk. PrivAk in Samsung is signed by the Samsung
root key. The Blob in Knox V2 lacks app information.

• The signed Blob is sent to the attestation server through the
app and the developer server, which verifies its integrity. In
Knox V3, the signed Blob is sent directly from the attestation
client to the attestation server in response to a unique id.
The unique id instead is forwarded to the attestation server.

• The attestation server verifies the Blob, or the unique id in
Knox V3. Then, replies to the developer server with a verdict
V indicating the verification result, app status and device
status.

• Finally, the developer server can verify the signature of the
app o and the Na using the received verdict.

5.2 Modelling Android Key Attestation
Key Attestation attests key pairs in addition to device and app
integrity. It relies on certificate chain verification rather than an
attestation server for verification. Therefore, the developer under-
takes the verification process, and it is crucial to validate the entire
certificate chain.

The Key Attestation protocol flow is depicted in Fig. 2, based
on Google’s documentation [8]. It starts with the key setup phase
and app installation. Application installation and its notation are
identical to the previous model.

Keymaster
(Trustzone)

Keystore
(Android OS) App Developer's server

Request key
creation

Device Internet

Protocol Continue ..

Trustzone Android OS

app = <Pkg,
content, PupDk,σ>PrivT,

CertRoot(PubT)
CertRoot(PubRoot)

PrivDk,PupDk
σ = SignPrivDk(App),
CertRoot(PubRoot)

verify(CertsChain,PubRoot)

Root Server

a = <Pkg, PupDk>
d = <device status>
PrivK, CertT(<PubK,a,d>)
CertsChain =
 CertT(<PubK,a,d>)+
 CertRoot(PubT)+
 CertRoot(PubRoot)

Request key
creation

Setup

Protocol
flow

CertsChainCertsChain CertsChain

Figure 2: Android Key Attestation protocol based on [8]

Setup phase. Based on the available documentation and analysing
exported certificates from Android devices [8, 10], we found that
the Keymaster is a trusted app available in the secure world that
can generate key certificates. It has a unique per-device certificate
key PrivT and CertRoot(PubT), which is signed with a Google root
certificate CertRoot(PubRoot) to form a certificate chain. Any key
generated by PrivT will have the full certificate chain of the Key-
master and Google root certificate. Thus, ensuring that the key
created in the trusted hardware can be publicly verified using the
Google root public certificate CertRoot(PubRoot).

Protocol flow. The protocol’s flow proceeds as follows:

• The mobile app requests a key pair certificate from the Android
Keystore PrivK,CertT(<PubK,a,d>).

• The Android Keystore requests that the Android Keymaster gen-
erates a key pair certificate. The certificate is signed by a TEE’s
key or a Strong box’s secure element key (Google Pixel phones
only) PrivT. The certificate generated in a form of a certificate
chain CertsChain that includes the certificate itself CertT(<PubK,
a,d>), TEE certificate CertRoot(PrivT) and Google root certifi-
cate CertRoot(PubRoot). Device d and app status information a is
added to the attribute section of the generated certificate. Unlike
previous protocols, the app signature is not included in the app
status information, but, instead, the app’s public certificate is.

• The mobile app can retrieve the chain certificate CertT(<PubK,a

,d>) without the private key. The private key never leaves the
secure hardware but can be used for cryptographic operations
via the Keymaster and the Android Keystore. Then, the app
sends the certificate chain CertsChain to the developer server for
verification.

• Finally, the developer server verifies the certificate chain CertsC

hain. This include verifying CertT(<PubK,a,d>) and CertRoot(Pr

ivT), then the root certificate CertRoot(PubRoot) using a public
version to ensure they are identical. The information about the
device d and the app a can then be extracted from the certificate’s
attribute section to verify the app certificate and identify the
device status to either continue communicating with the app or
not.

Symbolic modelling of remote attestation protocols for device and app integrity on Android ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Attacker App
installer

Honest App
installer

App Snub
App code

‘packageName’
‘contentsID’

Secure world
skAT key

Device

Dev Server: Set up for App
‘packageName’ ‘contentsID’

Attestation Server
skAT key

Dev Server: Protocol for App

Figure 3: Overview of modelling framework: each box repre-
sents a process in our SAPiC model

5.3 Modelling Android OS and the adversary
We model a minimalist Android OS functionality that includes
the app life cycle, and the required cryptographic operations. An
overview of our modelling framework is given in Fig. 3. Each box in
this figure represents a process in our SAPiC model. The “App code”
and “Dev Server: Protocol for App” boxes model a protocol that
uses the “Attestation Server” process. The “SecureWorld” process
models the trusted hardware on the device, and works with the
app installation and “Dev Server Set Up” processes, which ensure
the secure world can correctly measure the device and apps. The
“Attacker App Installer” and snub allow for arbitrary attacker apps
to run on the same device as the honest app. In this section, we
describe the app processes that use this framework.

Modelling Android Applications. An Android application con-
sists of a package name, source code, resources and a public key
certificate of the app’s developer. A package name is an identifier to
distinguish an app within a device. The source code and resources
shape the content and logic of the app, and we model these in
Tamarin as constants (e.g., ‘App1PackageName’ and ‘App1Content’
in the example below). The user of our framework must ensure that
the same values are used in the Dev Server and app installation
process. The app code functionality is modelled as a SAPiC process.

The Dev Server Set Up process signs the package name, contents
string and developer certificate with its signing key advk to obtain
the application signature appSignature. This is packed together
with the signed components to make the app. Then, the app is
outputted on a public channel, and we use a SAPiC private fact
“App_Published” to allow authentic installation(e.g., via Android
market place or an honest developer).

let DevServer =

//creating and publishing the application
new ∼advk; // Developer server signing key
new ∼devId;// Developer Id

// Signing the app
let appSignature = sign(∼advk,
⟨'App1PackageName','App1Content',pk(∼advk)⟩) in

//packing the app
let app = ⟨'App1PackageName','App1Content',pk(∼advk),

appSignature⟩ in
event App_Created('App1PackageName',appSignature);

// Send the app publicly
out(app);
// Send the app privately (e .g ., to Android marketplace)
[] −[]→ [!App_Published(∼devId,app)];

For installing apps onto a device, we consider two forms: honest
installation and arbitrary installation. Honest App installation refers
to installing apps that are explicitly modelled in the Tamarin code.
This could be, for instance, an app from a known developer that we
want to analyse.

The “Device” process creates a new device ID, sets up a secure
world process for this device ID and then starts the app installa-
tion processes. The device ID is a model-only reference number
to distinguish multiple devices within each run. The “Honest App
Installtion” process uses the App_published channel to receive the
app, checks its signature (using pattern matching) and starts the
app running.

let HonestAppInstalltion =

[!App_Published(devId,⟨'App1PackageName','App1Content',
pk(advk), sign(advk, ⟨'App1PackageName','App1Content',
pk(advk)⟩)⟩)] −[]→ [];
!AppCode

The “app code” process now has the device ID, package name
and contents string of the app, and these will be used when the
process calls to the secure world.

Arbitrary installation (Attacker apps): Following our attacker
model, we want to allow arbitrary attacker apps to run on the device
and make calls to the secure world. However, the secure world on
an un-tampered device should still be able to correctly measure
these devices (i.e., an attacker app cannot run its functionality and
be measured with the same app contents string as an honest app).
Therefore, the attacker app installation process lets the attacker
pick any package name and signing key, but uses a fresh name to
represent the app contents:

let ArbitraryAppInstallation =

in(⟨packagename, devKey⟩);
new ∼content; //content is different from any honest app
let appSignature = sign(devKey, ⟨packagename,∼content,
pk(devKey)⟩) in

let app = ⟨packagename,∼content,pk(devKey),appSignature⟩ in
out(app);
!AttackerProcess

The attacker process receives any input and forwards it to the
secure world, and then broadcasts the reply. This allows the attacker
to use the secure world in any way they wish.

Modelling network. The protocols’ documentation recommends
using a secure channel (e.g., TLS) when communicating with de-
veloper servers for attestation. MSR facts can be used to model
sending messages through a secure channel as follows: [] −[]→
[Blob_TLS_Ch(𝑏𝑙𝑜𝑏)] for sending the attestation report blob, and
[Blob_TLS_Ch(𝑏𝑙𝑜𝑏)] −[]→ [] for receiving the attestation report
blob. However, with such approach, the network adversary cannot
send/receive messages to/from the developer servers through the
secure channel. Therefore, we added two processes to allow the

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Abdulla Aldoseri, Tom Chothia, José Moreira, and David Oswald

adversary to communicate with the developer servers via a secure
channel as follows:

let Attacker1 = [Nonce_TLS_Ch(devId,nonce)]−[]→[Out(nonce)]
let Attacker2 = [In(blob)]−[]→[Blob_TLS_Ch(blob)];

Here, the adversary can receive a nonce from the developer
server over the secure channel and output it to the public channel.
Similarly, it can send a blob to the developer server over the secure
channel. The attacker utilises In(blob) and Out(nonce) to receive
and send the messages to the public channel. This allows the at-
tacker to craft its own nonce and attestation report blob, or use a
generated one from a tampered device or a tampered app.

5.4 Security measurement
The secure world measures the status of the device and creates an
attestation report blob; in Knox, Samsung relies on a warranty bit
(a one-time not programmable bit), which indicates the status of
the device. The bit is set when tampering is detected by the run-
time kernel protection (RKP) and the TrustZone-based Integrity
Management Architecture (TIMA), which periodically monitors the
kernel and certain device components [11, 42]. SafetyNet uses Com-
patibility Test Suite (CTS) profile match measurements to detect
tampered devices. CTS is a set of unit tests that test the compatibil-
ity of various Android classes and components of an Android device
including signature checking for public Android APIs [9]. Key Attes-
tation relies on the bootloader status (e.g., locked or unlocked) and
the verified boot status that are stored in secure, tamper-resistant,
hardware storage[8]. As stated in our attacker model, we assume
these approaches work correctly to measure the device and app.

As seen in the following code, we generalise these measured
properties and abstract them into two Tamarin terms: hardwareMe
asurement and softwareMeasurement. On one hand, hardwareMeasur
ement represents a hardware-based measurement that is obtained
from a trusted source and stored in tamper-resistant storage (e.g.,
the Knox warranty bit and Bootloader status). On the other hand, s
oftwareMeasurement refers to a measurement that is performed in
the normal world within the operating system (e.g., software-based
SafetyNet), and therefore it can be controlled by the attacker on a
tampered device only. Hence, when it is used, we model this as a
public input in Tamarin.

The attacker’s device rooting attempt is modelled by a public
input (in(status)) at the start of the secure world process. After
this, the secure world will run in either unlocked or locked mode.
We do not model the unlocking of a locked device, because un-
locking, according to the specification, factory resets the device.
Therefore, this is modelled as the creation of a new rooted device.
In software-based attestation systems, softwareMeasurement will
be used for measurement. This value is supplied by an adversary-
controlled input customSoftwareMeasurement when the device has
been tampered with.

To create an attestation report blob for Samsung Knox and Safe-
tyNet, we use the extended report function for creating crypto-
graphic measurement reports in an isolation execution environ-
ment [27].

let SecureWorldTA =

(//Did the attacker unlock the bootloader ?

in(status);
!(

// Apps call to the secworld
[SecureWorld_Ch_In(sessionID, deviceId,∼swId,nonce

,packagename,content,appSignature)]−[]→ [];
new ∼atId; // attestation id
event Attestating_App(∼atId,packagename,appSignature,deviceId);

if(status = `unlockBootloader') then
let hardwareMeasurement = `invalid' in
// Software measurement is not used in HW attestation
// in(customSoftwareMeasurement);
// let softwareMeasurement = customSoftwareMeasurement in

//On rooted devices nonce , packagename and appSig can be forged :
in(⟨fnonce,packagename,appSignature⟩)

//Creating a measurement report
let report = report(⟨∼atId,hardwareMeasurement,fnonce

,fpackagename,fappSignature⟩) in
//Form a blob of measurement report and its signature
// via the attestation key
let blob = ⟨∼atId, fnonce, hardwareMeasurement,fpackagename

,fappSignature, report,sign(report,∼skAT)⟩ in
event DeviceStatus(∼atId,deviceId,hardwareMeasurement);
// return attestation report to the app
[]--[]->[SecureWorld_Ch_Out(sessionID,blob)]

else
let hardwareMeasurement = `valid' in
let report = report(⟨∼atId,nonce,hardwareMeasurement,

packagename,appSignature⟩) in
let blob = ⟨∼atId,nonce,hardwareMeasurement,packagename,

appSignature,report,sign(report,∼skAT)⟩ in
event DeviceStatus(∼atId,deviceId,hardwareMeasurement);
// return attestation report to the app
[]--[]->[SecureWorld_Ch_Out(sessionID,blob)]

)
)@⟨ ' loc ',pk(∼skAT)⟩ // Indicating a trusted location .

This process creates a signed attestation report at a location
(TEE) identified by the tuple including the secure world’s public key
⟨ ' loc ',pk(∼skAT)⟩ using the report() function. The report contains
hardwareMeasurement, packageName and appSignature. This report
can be verified later by the attestation server using the particular
secure worlds public key. Note that the technical details on how the
TEE cryptographically protects the report are abstracted away in
SAPiC. We using the appropriate Tamarin predicates [13], we allow
the adversary to create reports in any other untrusted location.

Key Attestation certificates. Key Attestation relies on certifi-
cates as attestation reports instead of signed Blobs. Therefore, we
modelled an abstraction of the Internet X.509 Public Key Infrastruc-
ture Certificate, based on RFC5280 [18]. We modelled create_cert

ificate/3 to create certificates given their information, their sub-
ject’s public key and their issuer’s private key. verify_certificate
/2 is used to verify certificates for a given subject certificate and an
issuer certificate. We modelled the functions get_public_key_certi
ficate/1, get_signature_certificate/1, get_tbsInfo_certificate
/1 to extract information from certificates, specifically the attribute

Symbolic modelling of remote attestation protocols for device and app integrity on Android ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

section to retrieve bootloader status. We symbolically verify the PKI
operations separately, considering different real-world scenarios
including: self-signed certificates, forged certificate detection, chain
certification verification, verification of certificates with extension
data, and extraction of certificates’ public keys.

5.5 Security properties
Below, we describe the security properties that we require for
the protocols, expressed as first-order logic formulas. The syntax
Event(. . .)@𝑖 denotes that Event(. . .) was executed at timepoint 𝑖 .
We assume a scenario where a developer verifies the integrity of
an attested app running on a device. We aim to ensure the security
properties below:

Verification of device and app integrity for honest apps.
This property ensures that the validation of an attestation report by
an honest app implies that the attestation was done correctly. The
property states that for all ‘valid’ attestation verdicts (Verdict_app
event), they have a valid report generated at a trusted execution en-
vironment, valid device integrity and valid application integrity. The
appmust have been created by an honest developer (via App_Created
event), installed in a device (via Application_Installed event) and
have been attested by the device, with a valid state (via DeviceStatus
event).

∀𝑎𝑡𝐼𝑑, 𝑏𝑙𝑜𝑏, 𝑖 . Verdict_app(𝑎𝑡𝐼𝑑, 𝑏𝑙𝑜𝑏, ‘valid’, ‘valid’, ‘valid’)@𝑖 ⇒
∃𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑, 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑁𝑎𝑚𝑒, 𝑎𝑝𝑝𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒, 𝑎, 𝑏, 𝑐 .

App_Created(𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑁𝑎𝑚𝑒, 𝑎𝑝𝑝𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒)@𝑎∧
Application_Installed(𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑, 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑁𝑎𝑚𝑒, 𝑎𝑝𝑝𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒)@𝑏
∧ DeviceStatus(𝑎𝑡𝐼𝑑, 𝑑𝑒𝑣𝑖𝑐𝑒𝐼𝑑, ‘valid’)@𝑐 ∧ 𝑐 < 𝑖 .
Satisfying this property ensures that honest apps can perform a

successful attestation that yields a valid verdict. However, if this
property fails, it means that the attestation report does not prove
that the device really is valid.

Attestation report secrecy. This property ensures that the ad-
versary cannot learn/craft an attestation report blob that results
in a valid verdict by any method, including tampering apps and
devices. It states that for all ‘valid’ attestation verdicts (Verdict_app
event), then the adversary 𝐾𝑈 cannot learn their attestation report
blob before it is validated.

∀𝑎𝑡𝐼𝑑, 𝑏𝑙𝑜𝑏, 𝑖 . Verdict_app(𝑎𝑡𝐼𝑑, 𝑏𝑙𝑜𝑏, ‘valid’, ‘valid’, ‘valid’)@𝑖 ⇒
¬(∃𝑘. 𝐾𝑈 (𝑏𝑙𝑜𝑏)@𝑘 ∧ 𝑘 < 𝑖).
If this property fails and the attacker learns the attestation report

before the verdict, then the attacker can use the attestation report
to interact with the developer server and, for instance, obtain secret
messages that should only be available for valid, attested apps.

Attestation report (blob) uniqueness. This property ensures
that each attestation report (blob/certificate) that is accepted as
genuine by the developer server is unique.

∀n, 𝑖, 𝑗 . BlobAccepted(n)@𝑖 ∧ BlobAccepted(n)@ 𝑗 ⇒ 𝑖 = 𝑗 .

If this property fails then an attacker could reuse an old attesta-
tion report, successfully completing attestation to the development
server when the device is not present or has changed its state.

Attestation report (blob) recentness. This property checks that
the attestation report (blob/certificate) was generated in response
to the development server’s request. The development server’s
request for, and acceptance of, the attestation report are tagged
with a requestID so that they can be matched. The property states
that if an attestation report is accepted by the developer server,
then it must have been requested by the developer server before it
was created on the device.

∀𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐼𝐷,𝑏𝑙𝑜𝑏, 𝑖 . RequestedBlobAccepted(𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐼𝐷,𝑏𝑙𝑜𝑏)@𝑖 ⇒
∃ 𝑗, 𝑘 . BlobRequested(𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐼𝐷)@ 𝑗∧

BlobCreated(𝑏𝑙𝑜𝑏)@𝑘 ∧ (𝑗 < 𝑘) ∧ (𝑘 < 𝑖)).

Failure of this property would mean that attestation reports
were not linked to the request for them, meaning that the developer
might accept old, expired or compromised reports.

Reachability properties. To ensure that the model and all the
processes finish, we add reachability properties identified with
the “Correctness” prefix. These properties ensure that all possible
branches of the model are executable. For example, the property en-
suring that the process modelling an honest app finishes is encoded
as:

∃𝑖 . checked(‘honestAppFinished’)@𝑖 .

Failure of any of these lemmas would indicate an error in the
model or the design of the protocol.

6 DISCUSSION AND RESULTS
Our symbolic verification results are illustrated in table 1 and
demonstrate that software-based SafetyNet failed to satisfy the
device and app integrity properties due to an adversary being able
to tamper with the device’s software measurement to obtain the
attestation report as addressed in [15, 29]. This results in falsify-
ing the attestation report secrecy property as the adversary can
obtain the report and attest themselves to obtain secret messages
from the developer . Surprisingly, Knox V2 failed to meet the same
properties. The model shows traces of an adversary using an arbi-
trary app to make an attestation and obtain a valid verdict. Because
Knox V2 does not include the app contents in the attestation “blob”,
an attacker (through the public network or on a rooted device)
can relay a valid attestation blob from another app running on
a non-tampered device and have the attestation server validate
this. Technically, convincing a developer server that the phone is
not rooted, when it in fact is. Because Knox V2 does not attest
the app integrity, it cannot distinguish between honest apps and
arbitrary apps. As described above, we disclosed this to Samsung
who confirmed the issue, and that we were the first to report this.

SafetyNet (hardware-based) and Knox V3 satisfy all the security
properties. Both of these ensure device integrity and app integrity.
Ensuring only device integrity (as Knox V2 does) or only app in-
tegrity (as in SafetyNet (software-based)) will result in compromis-
ing integrity.

Our model of Android Key Attestation standard use case satis-
fies all security properties except the certificate/Blob recentness
property. Unlike the other protocols, the developer server does not
generate a nonce for the attestation report, but uniqueness of the

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Abdulla Aldoseri, Tom Chothia, José Moreira, and David Oswald

Table 1: Satisfied security properties by existing remote attestation protocols.

Protocol Device and App
integrity

Attestation Report
Secrecy

Attestation Report
Uniqueness

Attestation Report
Recentness

Google’s SafetyNet (SW) ✗ ✗ ✓ ✓

Google’s SafetyNet (HW) ✓ ✓ ✓ ✓

Samsung Knox RA V2 ✗ ✗ ✓ ✓

Samsung Knox RA V3 ✓ ✓ ✓ ✓

Key Attestation ✓ ✓ ✓ ✗

report is still guaranteed due to freshness of the subject key within
the report.

Key Attestation uses the untrusted OS’s device clock for cer-
tificate creation. We model this by allowing the secure world to
receive the time on a public channel, and as this is the only source
of freshness for the recommended use case, the attacker can send a
time in the future to the secure world and so get a blob to attest to
a key it can use much later when it is no longer fresh, and when
the key or device may have been compromised.

Therefore, a developer following the standard use case will be
unaware of when the key was created and when the attested cer-
tificate with its integrity information was created. We reported this
issue to Google (as described below). They have stated that they
will update their recommended use case for Key Attestation.

Performance overhead. In terms of performance, the Tamarin
prover manages to prove all the lemmas in no more than 28 steps for
SafetyNet and Knox for each lemma. Key Attestation took longer to
prove (a maximum of 36 steps). The modelling of X.509 Public Key
Certificate may have been the reason for the extra steps. Knox V2
achieves the shortest runtime of 4 minutes to verify all the lemmas.
While Key Attestation was the longest with 7 minutes. The runtime
was measured on a laptop with 8 cores intel i7, 16 GB RAM running
Ubuntu 22.04.1 LTS.

Mitigation. As a mitigation, Knox V2 requires binding the at-
tested app to the attestation process similar to Knox V3 by including
the app package name and its signature in the measurement report.
We conclude that device only remote attestation is not sufficient to
ensure integrity, as an adversary could always tamper with the app
and relay the attestation from a non-tampered device. Samsung con-
firmed the issue and stated that it was fixed in Knox V3. However,
as part of their reporting policy, they asked for a proof of concept to
prove the attack was practical. Because Knox licence is not publicly
available and requires a specific partner licence agreement, which
Samsung would not provide to us, we could not provide them with
a proof of concept, therefore it remains an open issue.

For Key Attestation, when we model the protocol including a
nonce from the developer server as an attribute in the generated
certificate we find that the certificate freshness security property
holds. With a nonce in the attestation, the developer can verify
when it was created and only accept fresh attestations.

We note that this is not an issue with the Android Key Attestation
protocol, rather it is an issue in the guidance given to developers

on how to use the KeyGenParameterSpec.Builder class for key cre-
ation. I.e., unlike the Knox V2 vulnerability, which corresponds
to breached security lemma for the Knox V2 system interacting
with an arbitrary attacker process. The Key Attestation vulnerabil-
ity is found when we look at a model of an app, which uses Key
Attestation in the recommended way. To overcome the issue, the
nonce needs to be set via setAttestationChallenge method in Key
Attestation as advised by [38]. Google confirmed this issue and said
they will address it in the future release of their documentation.

7 CASE STUDY: MODELLING A CODE
PROTECTION PROTOCOL

Above, we used basic use cases to evaluate the security properties
of remote attestation protocols. In this section, we show how our
framework can be used to verify a more complex design that uses
attestation.

Our example shows how to use attestation to provide code pro-
tection for apps. The difficulty of the problem is due to the design
of the application installation life-cycle in the Android operating
system (OS). Android does not protect applications’ sourcecode.
Leaking the source code is feasible via static and dynamic analy-
sis techniques. Previous studies discussed in section 3 proposed
several solutions that either need major changes to the Android
OS or provide limited protections that may be circumvented using
conventional techniques (e.g., repack a mobile application, compro-
mise a device). No code protection solution for mobile applications
has been proven to properly prevent code leakage yet, leaving the
feasibility of such a goal to be questioned.

Threat model. For this issue, we consider a more aggressive
threat model. In this model, we drop the use of secure channels (e.g.,
TLS) in the proposed protocol. Unlike the previous threat model,
messages sent by honest apps and developers are sent through the
public channel. This allows a Delov-Yao adversary to intercept, drop,
modify and relay messages in the network [20] without relying on
relay processes as before. Additionally, the physical adversary has
access to devices and apps, and can tamper with them including
installing their own repacked apps.

Candidate selection. To overcome the limitation of previously
proposed code protection solutions, we rely on hardware remote
attestation. Therefore, the suitable candidates based on our findings
from section 6 are Knox V3, SafetyNet hardware-based and Key
Attestation.

Symbolic modelling of remote attestation protocols for device and app integrity on Android ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Key Attestation has potential since the attested key can only be
used in the generated device. Moreover, having a per device key
can identify and authenticate messages between an app and its
developer server. This creates a form of continuous integrity check
(i.e., as long as the key is valid and in-use, the integrity of their
apps and devices are preserved). Such an option is not available
by default in Knox V3 and SafetyNet hardware-based, . Secondly,
encrypting a secret with an attested key, binds the secret to the
hardware root of trust. For all these reasons, we selected the Key
Attestation protocol as a candidate for the code protection model.

Modelling code protection. It is difficult to have full protection
for the app source code as it may require changes to the Android
OS. Therefore, following previous studies, we choose to perform
partial code protection in which an application is divided into base
code and protected code. The purpose of the base code is to fetch
and load protected code at runtime conditionally. This approach
has been addressed before as dynamic code loading and used in
packer apps [21] locally and remotely by Google Dynamic delivery
[2]. The difference in our proposed model is that, unlike previous
studies that are based on software-based techniques, we are relying
on the hardware root of trust (namely hardware-based attestation)
to ensure the integrity of applications and their devices (1). We are
considering a more aggressive adversary that have a full control of
devices, including installing apps and monitoring the network (2).
Finally, we are not considering any custom changes to the Android
OS. Our model considers Android OS policy with no changes to any
system and hardware level services to ensure that it is applicable
for practical implementation (3).

Keymaster
(Trustzone)

Keystore
(Android OS)

Get nonce

App Developer's server

CertsChain

NA

CertsChain

NA

CertsChain

Device Internet

c

Trustzone Android OS

NA

app = <Pkg,
content, PubDk,σ>

Pubsecret

PrivT,
CertRoot(PubT),

CertRoot(PubRoot)

CertRoot(PubRoot)
PrivDk,PubDk

σ = SignPrivDk(App),
CertRoot(PubRoot),
Privsecret, Pub

secret
,

secret

verify(CertsChain,PubRoot)
σ = sign(secret, Privsecret)
c = aenc(<secret+σ>,PubK)

NA ∈ R {0,1}32

Root Server

a = <Pkg, PupDk>
d = <device status>
PrivK,
CertT(<PubK,a,d,NA>)
CertsChain =
 CertT(<PubK,a,d,NA>)+
 CertRoot(PubT)+
 CertRoot(PubRoot)

cc

<secret+σ> = adec(c,PrivK)

<secret+σ><secret+σ>

verify(σ, secret, Pubsecret)
if(verification is valid) load secret

Figure 4: Proposed code protection protocol based onAndroid
Key Attestation

Protocol Flow. Figure 4 illustrates the flow of the proposed code
protection protocol. In the setup phase, first, the developers create
secret source code. We model it as a fresh value (line 02). Then, the

developers need to set up their apps to have a public verification key
(pk(secretSk)/ PubSecret) as part of the application’s content (line
07). This key will be used in later steps to verify the authenticity
and integrity of the retrieved secret source code.

01| let DevServerKA =

02| new ∼secret; //generate secret
03| event SecretGenerated(∼secret);
// generate secret ' s verification key
04| new ∼secretSk; out(pk(∼secretSk));
// creating and publishing the application
05| new ∼advk; // Dev server signing
06| let packagename = `App1PackageName' in
07| let appContent = ⟨'App1Content', pk(∼secretSk) ⟩ in
08| let appSignature = sign(

| ⟨packagename,appContent,pk(∼advk)⟩,∼advk)
09| let app = ⟨packagename,appContent,pk(∼advk),appSignature⟩ in
10| out(app);

• The protocol starts with a request from the app to the developer
server to get a nonce, which is passed from the developer server
to the app, to the Android Keymaster to initiate the attestation.

• The Keymaster creates a public key certificate PupK containing
the nonce, app’s information (i.e., package name and signature),
and device status signed with the Keymaster certificate to form
a chain certificate.

• The certificate chain is passed publicly to the developer server
that verifies its content and the chain certificate using Google
public root certificate. The validation of the app’s information is
crucial, as it not only attests the application for tampering, but
also ensures that the verification key PubSecret within the app’s
content never changes. Also, it ensures the authenticity of the
secure world generated key.

• After verifying the certificate and its content, the developer
server signs the secret source code with PrivSecret to make
the signature o. Together, o and the secret are encrypted with
the attested key PupK to make the cipher c which is sent out
publicly.

• Once an app receives the cipher c, it is passed to the Keymaster
for decryption. Only the device that owns PrivK will be able to
decrypt the cipher to obtain both the secret and its signature o.

• Finally, the app verifies the integrity and the authenticity of the
secret using PubSecret and o prior to loading it at runtime.
The cipher c can be stored privately in app-storage. While the s

ecret can be decrypted, loaded at run time and cleared whenever
it is not being used. The decryption process can operate locally
afterwards. No further attestation is required, because as long as
the key is in use, the integrity of the device and the app should be
preserved. Rooting the device by unlocking the bootloader should
factory reset the device, deleting the generated keys and preventing
access to the protected source code.

Security properties. For the security properties, we focus on
code protection specific lemmas. We need to ensure that the fol-
lowing three lemmas are satisfied.
• Secret Validity / Correctness: The purpose of this property is
to ensure that the loaded secret code must be generated by an
honest developer previously. It states that for all the received

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Abdulla Aldoseri, Tom Chothia, José Moreira, and David Oswald

secrets to a valid device (non tampered device) and an honest
application, then, this secret must be generated by an honest
developer at some time before.

∀𝑠𝑒𝑐𝑟𝑒𝑡, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷, 𝑗, 𝑘 .

SecretReceivedatDevice(𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷, 𝑠𝑒𝑐𝑟𝑒𝑡, ‘valid’)@ 𝑗∧

SecretReceivedAppStatus(𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷, 𝑠𝑒𝑐𝑟𝑒𝑡, ‘valid’)@𝑘 ⇒

∃𝑖 . SecretGenerated(𝑠𝑒𝑐𝑟𝑒𝑡)@𝑖 ∧ (𝑖 < 𝑗) ∧ (𝑗 < 𝑘).

• Secret secrecy: This property ensures the confidentiality of the
secret code against tampered devices, arbitrary attacker apps, and
network adversaries. It states that, for all secrets generated by
an honest developer, the secrets must not be known or obtained
by these adversaries.

∀𝑠𝑒𝑐𝑟𝑒𝑡, 𝑖 . SecretGenerated(𝑠𝑒𝑐𝑟𝑒𝑡)@𝑖 ⇒
¬((∃𝑘. 𝐾𝑈 (𝑠𝑒𝑐𝑟𝑒𝑡)@𝑘)
∨ (∃𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷, 𝑘.
SecretReceivedAppStatus(𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷, 𝑠𝑒𝑐𝑟𝑒𝑡, ‘invalid’)@𝑘)
∨ (∃𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷, 𝑘.
SecretReceivedatDevice(𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷, 𝑠𝑒𝑐𝑟𝑒𝑡, ‘invalid’)@𝑘)).

• Code injection: This property ensures that the code generated
by an adversary cannot be loaded by an honest app running on
a valid (non-tampered) device.

∀𝑠𝑒𝑐𝑟𝑒𝑡, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷, 𝑖, 𝑘 . SecretReceivedatDevice(𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷,
𝑠𝑒𝑐𝑟𝑒𝑡, ‘valid’)@𝑖 ∧ 𝐾𝑈 (𝑠𝑒𝑐𝑟𝑒𝑡)@𝑘 ⇒

¬(∃ 𝑗 . SecretReceivedAppStatus(𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷, 𝑠𝑒𝑐𝑟𝑒𝑡, ‘valid’)@ 𝑗).

Discussion, results and limitations. The modelled protocol
manages to verify all the security properties. Starting with secret
validity and secrecy properties, which ensure that no adversary can
learn the honest developer’s generated secret code. The verifica-
tion’s source code key prevents adversaries-generated code from
injecting apps in a non-tampered device. The properties are true
even without using a secure channel between the app and the de-
veloper server, due to the use of Key Attestation. Considering these
findings, leads us to model a variant of this protocol where instead
of sending a secret code, the developer can send a secret decryption
key to decrypt an encrypted protected code within the app. The
variant achieves the same protection level. We implemented this
protocol and ran it on a locked Samsung device (A73), loading code
that ran 10 sorting algorithms. Running the app 100 times we found
that it takes on average 2.74 seconds to complete the whole protocol.
We will make the code open source, and it will be available on the
website for this paper. In terms of limitations, while the protocol
provides protection against strong adversaries that have not been
considered by software-based techniques addressed in section 3
and the threat model of remote attestation protocols in section 4, it
cannot hold when device tampering happens at runtime (e.g., via ex-
ploits in kernel or memory vulnerabilities). Developers can choose
to attest only keys of recent Android OS versions or specific device
brands. However, this makes the solution less practical. Ultimately,
a continuous runtime integrity check is required to overcome this
issue.

8 CASE STUDY II: BEYOND THE FRAMEWORK
The previous sections demonstrate several uses for our proposed
modelling framework. Here, we show that our framework is general
by modelling an existing protocol, namely attested key exchange
that is described in [12, 27]. The protocol uses remote attestation to
establish a shared key between a user and an IEE. The user sends
their public key to the IEE and expects a fresh symmetric key in
return, encrypted with the user’s public key. We model the protocol
between a developer server and the trusted app. We consider the
same threat model as the code protection protocol.

The protocol illustrated in figure 5 at appendix A. It starts by
creating an honest app that is shipped with its developer’s public
key. Then, the app starts the Key Attestation protocol, requests a
nonce from the developer server, and requests creating a certificate
chain from the Android Keystore. Because the Android Keystore
does not export symmetric keys, the app will create the symmetric
key and request to sign it with the generated certificate chain. Then,
the Android Keystore encrypts the certificate chain, the symmetric
key and its signature using the developer’s public key. Finally, the
encrypted content is sent to the developer server over a public
channel for decryption and verification.

We model several security properties, including ‘verification of
device and app integrity’ and ‘shared key secrecy.’ The first property
ensures that all the attested, shared keys must be created by honest
developers and attested by a valid device. On the other hand, the
second property, ensures that an adversary cannot learn/supply
a key to the developer that yields a valid verdict. All the security
properties are proven successfully with our framework showing
that this protocol would be secure when implemented as an Android
app.

9 CONCLUSION
In this paper, we performed symbolic verification of several Android
remote attestation protocols that ensure app and device integrity.
Our modelling framework allows us to check general security prop-
erties of the attestation frameworks and also the properties of apps
that use these frameworks. We have shown that Samsung Knox V2
attestation fails to ensure the integrity of devices because it fails to
ensure app integrity. We conclude that ensuring device integrity
alone is not enough; app integrity is required as well. Also, we
have shown that the recommended practice of Android Key At-
testation misses a challenge phase, which allows an adversary to
attest old keys that might be compromised, without the developer’s
awareness. We have also discussed possible mitigation for both
issues. Samsung Knox V2 requires a patch. While Key Attestation
requires updating the recommended practice documentation to
include a challenge phase. Finally, we presented two case studies
to generalise the framework and solve a code protection problem
in Android by utilising our findings and models.

ACKNOWLEDGMENTS
This research is partially funded by theNCSC through the TimeTrust
project and by EPSRC under grants EP/R012598/1 and EP/V000454/1.
The results feed into DsbDtech. Abdulla Aldoseri is supported by a
stipend from the University of Bahrain.

Symbolic modelling of remote attestation protocols for device and app integrity on Android ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

REFERENCES
[1] Martín Abadi and Cédric Fournet. 2001. Mobile values, new names, and secure

communication. In ACM SIGPLAN-SIGACT Symposium on Principles of program-
ming languages (POPL). ACM, London (UK), 104–115.

[2] Android. 2019. About Dynamic Delivery. https://developer.android.com/studio/
projects/dynamic-delivery. (Accessed on 12/01/2019).

[3] Android. 2021. Application Signing | Android Open Source Project. https:
//source.android.com/security/apksigning. (Accessed on 11/24/2021).

[4] Android. 2021. Locking/Unlocking the Bootloader. https://source.android.com/
devices/bootloader/locking_unlocking. (Accessed on 11/25/2021).

[5] Android. 2021. Shrink, obfuscate, and optimize your app. https://
developer.android.com/studio/build/shrink-code. (Accessed on 11/26/2021).

[6] Android. 2021. Trusty TEE. https://source.android.com/security/trusty.
[7] Android. 2021. Verified Boot | Android Open Source Project. https://

source.android.com/security/verifiedboot. (Accessed on 11/25/2021).
[8] Android. 2021. Verifying hardware-backed key pairs with Key Attestation. https:

//developer.android.com/training/articles/security-key-attestation.
[9] Android. 2022. Compatibility Test Suite | Android Open Source Project. https:

//source.android.com/compatibility/cts. (Accessed on 05/28/2022).
[10] Android. 2022. Key and ID Attestation. https://source.android.com/docs/security/

keystore/attestation. (Accessed on 09/01/2022).
[11] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad

Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: Real-time
kernel protection from the arm trustzone secure world. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. 90–102.

[12] Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi.
2016. Foundations of hardware-based attested computation and application to
SGX. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
245–260.

[13] David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, and Benedikt
Schmidt. 2021. Tamarin Prover (v. 1.6.1). https://tamarin-prover.github.io.

[14] Stefano Berlato and Mariano Ceccato. 2020. A large-scale study on the adoption
of anti-debugging and anti-tampering protections in android apps. Journal of
Information Security and Applications 52 (2020), 102463.

[15] CENSUS. 2017. Examining the value of SafetyNet Attestation as an Application
Integrity Security Control. https://census-labs.com/news/2017/11/17/examining-
the-value-of-safetynet-attestation-as-an-application-integrity-security-
control/. (Accessed on 08/15/2019).

[16] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and
Flavio D Garcia. 2021. {VoltPillager}: Hardware-based fault injection attacks
against Intel {SGX} Enclaves using the {SVID} voltage scaling interface. In 30th
USENIX Security Symposium (USENIX Security 21). 699–716.

[17] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan Millen,
Brian O’Hanlon, John Ramsdell, Ariel Segall, Justin Sheehy, and Brian Sniffen.
2011. Principles of remote attestation. International Journal of Information
Security 10, 2 (2011), 63–81.

[18] R. Housley W. Polk D. Cooper S. Santesson S. Farrell S. Boeyen. 2008. rfc5280.
https://datatracker.ietf .org/doc/html/rfc5280. (Accessed on 11/28/2021).

[19] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rattanavipanon, and
Gene Tsudik. 2021. On the TOCTOU problem in remote attestation. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
2921–2936.

[20] Danny Dolev and Andrew Yao. 1983. On the security of public key protocols.
IEEE Transactions on information theory 29, 2 (1983), 198–208.

[21] Parvez Faruki, Hossein Fereidooni, Vijay Laxmi, Mauro Conti, and Manoj Gaur.
2016. Android code protection via obfuscation techniques: past, present and
future directions. arXiv preprint arXiv:1611.10231 (2016).

[22] Georgios Fotiadis, José Moreira, Thanassis Giannetsos, Liqun Chen, Peter B
Rønne, Mark D Ryan, and Peter YA Ryan. 2021. Root-of-Trust Abstractions
for Symbolic Analysis: Application to Attestation Protocols. In International
Workshop on Security and Trust Management. Springer, 163–184.

[23] Google. 2019. Android keystore system. https://developer.android.com/training/
articles/keystore. (Accessed on 09/16/2019).

[24] Google. 2019. SafetyNet Attestation API. https://developer.android.com/training/
safetynet/attestation. (Accessed on 07/23/2019).

[25] Guardsquare nv. 2019. DexGuard: Android obfuscation and runtime-self protec-
tion (RASP). https://www.guardsquare.com/en/products/dexguard.

[26] Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi. 2021. SafetyNOT:
on the usage of the SafetyNet attestation API in Android. In Proceedings of the
19th Annual International Conference on Mobile Systems, Applications, and Services.
150–162.

[27] Charlie Jacomme, Steve Kremer, and Guillaume Scerri. 2017. Symbolic models for
isolated execution environments. In 2017 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 530–545.

[28] Nak Young Kim, Jaewoo Shim, Seong-je Cho, Minkyu Park, and Sangchul Han.
2016. Android Application Protection against Static Reverse Engineering based
on Multidexing. J. Internet Serv. Inf. Secur. 6, 4 (2016), 54–64.

[29] John Kozyrakis. 2015. SafetyNet: Google’s tamper detection for Android. https:
//koz.io/inside-safetynet/. (Accessed on 08/05/2019).

[30] Steve Kremer and Robert Künnemann. 2016. Automated analysis of security
protocols with global state. Journal of Computer Security 24, 5 (2016), 583–616.

[31] Yanlin Li, Jonathan M McCune, and Adrian Perrig. 2011. VIPER: Verifying the
Integrity of PERipherals’ Firmware. (2011).

[32] Kyeonghwan Lim, Younsik Jeong, Seong-je Cho, Minkyu Park, and Sangchul
Han. 2016. An Android Application Protection Scheme against Dynamic Reverse
Engineering Attacks. JoWUA 7, 3 (2016), 40–52.

[33] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The
TAMARIN prover for the symbolic analysis of security protocols. In International
Conference on Computer Aided Verification (CAV) (LNCS, Vol. 8044). Springer, Saint
Petersburg, Russia, 696–701.

[34] Gleb Naumovich and Nasir Memon. 2003. Preventing piracy, reverse engineering,
and tampering. computer 36, 7 (2003), 64–71.

[35] Long Nguyen Vu, Ngoc-Tu Chau, Seongeun Kang, and Souhwan Jung. 2017.
Android rooting: An arms race between evasion and detection. Security and
Communication Networks 2017 (2017).

[36] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael
Steiner, and Gene Tsudik. 2019. VRASED: A Verified Hardware/Software Co-
Design for Remote Attestation. In 28th USENIX Security Symposium (USENIX
Security 19). 1429–1446.

[37] OWASP. 2017. Mobile Top 10 2016: M8: Code Tampering. .
[38] Shiv Sahni. 2019. Android Key Attestation. What the heck is Android Key. . . |

by Shiv Sahni | InfoSec Write-ups. https://infosecwriteups.com/android-key-
attestation-581da703ac16. (Accessed on 02/13/2022).

[39] Samsung. 2019. Knox: Device Health Attestation. https://docs.samsungknox.com/
whitepapers/knox-platform/attestation.htm. (Accessed on 07/31/2019).

[40] Samsung. 2019. Knox: Root of Trust. https://docs.samsungknox.com/
whitepapers/knox-platform/hardware-backed-root-of-trust.htm.

[41] Samsung. 2021. Enhanced Attestation (v3). https://docs.samsungknox.com/dev/
knox-attestation/about-attestation.htm. (Accessed on 11/23/2021).

[42] Samsung. 2021. Real-time Kernel Protection. https://docs.samsungknox.com/
admin/whitepaper/kpe/real-time-kernel-protection.htm.

[43] Samsung. 2021. Tutorial: Attestation (v2). https://docs.samsungknox.com/dev/
knox-attestation/tutorial-v2.htm. (Accessed on 11/23/2021).

[44] Samsung. 2022. Knox Attestation. https://docs.samsungknox.com/dev/knox-
attestation/about-attestation.htm. (Accessed on 08/05/2022).

[45] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, and Leendert van
Doorn Pradeep Khosla. 2005. Pioneer: Verifying Code Integrity and Enforc-
ing Untampered Code Execution on Legacy Systems. (2005).

[46] Lina Song, Zhanyong Tang, Zhen Li, Xiaoqing Gong, Xiaojiang Chen, Dingyi
Fang, and Zheng Wang. 2017. AppIS: protect Android apps against runtime
repackaging attacks. In 2017 IEEE 23rd International Conference on Parallel and
Distributed Systems (ICPADS). IEEE, Shenzhen, China, 25–32.

[47] San-Tsai Sun, Andrea Cuadros, and Konstantin Beznosov. 2015. Android Rooting:
Methods, Detection, and Evasion. In Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices (Denver,
Colorado, USA) (SPSM ’15). ACM, New York, NY, USA, 3–14. https://doi.org/
10.1145/2808117.2808126

[48] Simon Tanner, Ilian Vogels, and RogerWattenhofer. 2019. Protecting android apps
from repackaging using native code. In International Symposium on Foundations
and Practice of Security. Springer, 189–204.

[49] Jin-Hyuk Jung Yuxue Piao and Jeong Hyun Yi. 2016. Server-based code obfus-
cation scheme for APK tamper detection. https://onlinelibrary.wiley.com/doi/
pdfdirect/10.1002/sec.936. In Security Comm. Networks. (Accessed on 11/26/2021).

[50] Beibei Zhao, Zhanyong Tang, Zhen Li, Lina Song, Xiaoqing Gong, Dingyi Fang,
Fangyuan Liu, and Zheng Wang. 2017. Dexpro: A bytecode level code protection
system for android applications. In International Symposium on Cyberspace Safety
and Security. Springer, 367–382.

https://developer.android.com/studio/projects/dynamic-delivery
https://developer.android.com/studio/projects/dynamic-delivery
https://source.android.com/security/apksigning
https://source.android.com/security/apksigning
https://source.android.com/devices/bootloader/locking_unlocking
https://source.android.com/devices/bootloader/locking_unlocking
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
https://source.android.com/security/trusty
https://source.android.com/security/verifiedboot
https://source.android.com/security/verifiedboot
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-key-attestation
https://source.android.com/compatibility/cts
https://source.android.com/compatibility/cts
https://source.android.com/docs/security/keystore/attestation
https://source.android.com/docs/security/keystore/attestation
https://tamarin-prover.github.io
https://census-labs.com/news/2017/11/17/examining-the-value-of-safetynet-attestation-as-an-application-integrity-security-control/
https://census-labs.com/news/2017/11/17/examining-the-value-of-safetynet-attestation-as-an-application-integrity-security-control/
https://census-labs.com/news/2017/11/17/examining-the-value-of-safetynet-attestation-as-an-application-integrity-security-control/
https://datatracker.ietf.org/doc/html/rfc5280
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation
https://www.guardsquare.com/en/products/dexguard
https://koz.io/inside-safetynet/
https://koz.io/inside-safetynet/
https://www.owasp.org/index.php/Mobile_Top_10_2016-M8-Code_Tampering
https://infosecwriteups.com/android-key-attestation-581da703ac16
https://infosecwriteups.com/android-key-attestation-581da703ac16
https://docs.samsungknox.com/whitepapers/knox-platform/attestation.htm
https://docs.samsungknox.com/whitepapers/knox-platform/attestation.htm
https://docs.samsungknox.com/whitepapers/knox-platform/hardware-backed-root-of-trust.htm
https://docs.samsungknox.com/whitepapers/knox-platform/hardware-backed-root-of-trust.htm
https://docs.samsungknox.com/dev/knox-attestation/about-attestation.htm
https://docs.samsungknox.com/dev/knox-attestation/about-attestation.htm
https://docs.samsungknox.com/admin/whitepaper/kpe/real-time-kernel-protection.htm
https://docs.samsungknox.com/admin/whitepaper/kpe/real-time-kernel-protection.htm
https://docs.samsungknox.com/dev/knox-attestation/tutorial-v2.htm
https://docs.samsungknox.com/dev/knox-attestation/tutorial-v2.htm
https://docs.samsungknox.com/dev/knox-attestation/about-attestation.htm
https://docs.samsungknox.com/dev/knox-attestation/about-attestation.htm
https://doi.org/10.1145/2808117.2808126
https://doi.org/10.1145/2808117.2808126
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sec.936
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sec.936

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Abdulla Aldoseri, Tom Chothia, José Moreira, and David Oswald

APPENDIX
A ATTESTED KEY EXCHANGE PROTOCOL

Keymaster
(Trustzone)

Keystore
(Android OS)

Get nonce

App

c

<NA,Ak,PubDV>

c

<NA,Ak,PubDV>

c

Device Internet

Trustzone Android OS

NA

PrivT,
CertRoot(PubT)

CertRoot(PubRoot)

Root Server

a = <Pkg, PupDk>
d = <device status>
PrivK, CertT(<PubK,a,d>)
CertsChain =
 CertT(<PubK,a,d>)+
 CertRoot(PubT)

o = sign(Ak,PrivK)
p = <o, Ak,CertsChain>
c = aenc(p,PubDV)

PrivDk,PubDk
σ = SignPrivDk(App),
CertRoot(PubRoot),

PrivDV, Pub
DVt

NA ∈ R {0,1}32

<o, Ak,CertsChain> = adec(d,PrivDV)
verify(CertsChain,PubRoot)
verify(o,Ak,CertsChain)

Developer's server

app = <Pkg,
content, PubDk,σ>

PubDV

~ Ak // attested key

Figure 5: Modelling attested key exchange protocol from
[12, 27] using the proposed remote attestation framework

B SAPIC SYNTAX
Fig. 6 describes the SAPiC syntax. The syntax allows to define a
protocol as a process. It is then translated into a set of Tamarin
MSRs that adhere to the semantics of the calculus, which is a dialect
of the applied pi-calculus [1]. The calculus comprises an order-sorted
term algebra with infinite sets of publicly known names PN , freshly
generated names FN , and variables 𝑉 . It also comprises a signature
Σ, i.e., a set of function symbols, each with an arity. Messages are
elements from a set of terms𝑇 over PN , FN , and𝑉 , built by applying
the function symbols in Σ. Events in SAPiC are similar to Tamarin
action facts, and they annotate specific parts of the process to be
used to define security properties. We denote 𝐹 the set of Tamarin
action and state facts. As opposed to the applied pi-calculus [1],
SAPiC’s input construct in(𝑀,𝑁); 𝑃 performs pattern matching
instead of variable binding. See [13, 30] for the complete details.

⟨𝑀,𝑁 ⟩ ∶∶= 𝑥, 𝑦, 𝑧 ∈ 𝑉 variables
∣ 𝑝 ∈ 𝑃𝑁 public names
∣ 𝑛 ∈ 𝐹𝑁 fresh names
∣ 𝑓 (𝑀1, . . . , 𝑀𝑘) s.t. 𝑓 ∈ Σ of arity 𝑘 function application

⟨𝑃,𝑄⟩ ∶∶= processes
∣ 0 terminal (null) process
∣ 𝑃 ∣ 𝑄 parallel execution of processes 𝑃 and𝑄
∣ !𝑃 replication of process 𝑃
∣ new ∼𝑛;𝑃 binds 𝑛 to a new fresh value in process 𝑃
∣ out(𝑀,𝑁);𝑃 outputs message 𝑁 to channel𝑀
∣ in(𝑀,𝑁);𝑃 inputs message 𝑁 to channel𝑀
∣ if 𝑃𝑟𝑒𝑑 then 𝑃 [else 𝑄] 𝑃 if predicate 𝑃𝑟𝑒𝑑 holds; [else𝑄]
∣ event 𝐹 ;𝑃 executes event (action fact) 𝐹
∣ 𝑃 +𝑄 non-deterministic choice
∣ insert 𝑀,𝑁 ;𝑃 inserts 𝑁 at memory cell𝑀
∣ delete 𝑀 ;𝑃 deletes content of memory cell𝑀
∣ lookup 𝑀 as 𝑥 in 𝑃 [else 𝑄] if𝑀 exists, bind it to 𝑥 in 𝑃 ; else𝑄
∣ lock 𝑀 ;𝑃 gain exclusive access to cell𝑀
∣ unlock 𝑀 ;𝑃 waive exclusive access to cell𝑀
∣ [𝐿] −[𝐴]→ [𝑅];𝑃 (𝐿, 𝑅,𝐴 ∈ 𝐹

∗) provides access to Tamarin MSRs

Notation: 𝑛 ∈ FN , 𝑥 ∈ 𝑉 ,𝑀, 𝑁 ∈ 𝑇, 𝐹 ∈ 𝐹 .

Figure 6: SAPiC syntax.

	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 An attacker model for remote attestation platforms
	5 Modelling remote attestation platforms
	5.1 Modelling SafetyNet and Samsung Knox attestation
	5.2 Modelling Android Key Attestation
	5.3 Modelling Android OS and the adversary
	5.4 Security measurement
	5.5 Security properties

	6 Discussion and results
	7 Case study: Modelling a code protection protocol
	8 Case study II: Beyond the framework
	9 Conclusion
	Acknowledgments
	References
	A Attested Key Exchange Protocol
	B SAPiC Syntax

