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ABSTRACT
Contactless systems, such as the EMV (Europay, Mastercard and
Visa) payment protocol, are vulnerable to relay attacks. The typical
countermeasure to this relies ondistance bounding protocols, in
which a reader estimates an upper bound on its physical distance
from a card by doing round-trip time (RTT) measurements. However,
these protocols are trivially broken in the presence of rogue readers.
At Financial Crypto 2019, we proposed two novel EMV-based relay-
resistant protocols: they integrate distance-bounding with the use
of hardware roots of trust (HWRoT) in such a way that correct
RTT-measurements can no longer be bypassed.

Our contributions are threefold: first, we design a calculus to
model this advanced type of distance-bounding protocols integrated
with HWRoT; as an additional novelty, our calculus is also the first to
allow for mobility of cards and readers during a proximity-checking
phase. Second, to make it possible to analyse these protocols via
more standard mechanisms and tools, we consider a 2018 charac-
terisation of distance-bounding security that does away with phys-
ical aspects and relies only on the causality of events; we cast it
in our richer calculus and extend its theoretical guarantees to our
more expressive models (with mobility, potentially rogue readers,
and HWRoT). Due to this extension, we can carry out the security
analysis in the standard protocol verification tool ProVerif. Third,
we provide the first implementation of Mastercard’s relay-resistant
EMV protocol PayPass-RRP as well as one of its 2019 extension
with HWRoT called PayBCR. We evaluate their efficiency and their
robustness to relay attacks, in presence of both honest and rogue
readers. Our experiments are the first to show that Mastercard’s
PayPass-RRP and its HWRoT-based extension PayBCR are both
practical in preventing relay attacks of the magnitude shown thus-far
in EMV.

CCS CONCEPTS
• Security and privacy → Formal security models.
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1 INTRODUCTION
Contactless payments are now globally adopted and in 2019 alone,
“50 countries have seen more than 10% increase in tap-to-pay vs.
PIN-based transactions”, and “in Europe, more than two-thirds of
face-to-face Visa transactions occur contactlessly1”. As such, the
importance of fast and secure contactless payments cannot be under-
stated. This paper focuses on the development of a formal approach
to security analysis of new contactless payments, their integration
and implementation as per the EMV (Europay Mastercard Visa)
standard as well as their robustness and efficiency testing.

One of the main security concerns in contactless payments is that
of relay attacks. In these, a man-in-the-middle (MiM) is interposed
between an EMV reader and an honest EMV card which is out of
the range of the reader. The adversary captures messages honestly
generated by the card and the reader, and simply forwards them
back and forth between the two. In such a way, the MiM makes
it look as if the card were in the range of the PoS (Point of Sale).
Consequently, the MiM manages to pay fraudulently with the funds
associated to the victim-card. The contactless/NFC (Near Field Com-
munication) interface that touch-and-pay EMV builds on does not
protect against these vulnerabilities. To mitigate such relay attacks,
after 2016, Mastercard’s EMV specifications included the PayPass-
RRP protocol. In this protocol (detailed in Appendix B and shown in
Figure 5), the reader measures the round-trip times (RTTs) in certain
exchanges between itself and the card. That is, the PayPass-RRP
reader distance-bounds, the contactless Mastercard: if the RTTs are
within a given bound, the likelihood is that the card is close to the
reader and no relay attack is taking place.

In the PayPass-RRP protocol, the main assumption is that the
reader/PoS behaves correctly and as such detects a relay attack
and stops it. However, the reader/PoS has just one incentive: to
take the payment, be it honest or relayed. What is more, in EMV
(i.e., in the PayPass-RRP protocol), the card-issuing bank gets
1https://usa.visa.com/visa-everywhere/blog/bdp/2019/05/13/tap-to-pay-
1557714409720.html
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no proof that the reader performed the anti-relay checks. Rogue
readers could easily conspire with the relaying MiM and allow far-
away payments to go through; which we term “collusive relaying”.
To this end, we introduced two contactless payment protocols that
augment the PayPass-RRP reader with a TPM (Trusted Platform
Module), in order to protect against collusive relaying: i.e., the RTT-
measurements necessarily pass through the TPM on-board the reader,
in a way that ensures that dishonest readers can no longer cheat and
allow relayed-transactions through. We presented these protocols,
without a proof of correctness or implementation, as a short paper
at Financial Crypto 2019 [7] . Our two solutions, called PayBCR
and PayCCR, build on PayPass-RRP in a way that is backwards
compatible with EMV: PayBCR does not modify the PayPass-
RRP card, while PayCCR does not modify the bank’s side of the
PayPass-RRP protocol.

Shortcomings of State of the Art & Related Work. To the best
of our knowledge, no formal analysis of the security of PayBCR
or PayCCR is possible with any previously proposed framework.
There exist a number of formal frameworks for modelling distance
bounding protocols (e.g. [2, 11]) that do not have automated tool
support. Formal methods that lead to automated tools [8, 9, 12, 18]
have been applied to analyse (authenticated) distance-bounding and
proximity-checking protocols, including PayPass-RRP. However
all of these works require an honest reader, and are unable to model
the evidence produced by the hardware roots of trust. Two of these
methods [8, 12] put forward a version of the applied-pi calculus spe-
cialised for encoding distance-bounding: i.e., with participants hav-
ing locations in metric spaces, actions being timed, etc. The approach
by Mauw et al. in [18] is based in turn on multiset-rewriting logics,
in which the authors express two flavours of distance-bounding se-
curity: one pertaining to time and locations, and the other hinging
on just a series of events on a trace. The latter is called causality-
based distance bounding and [18] also proves that, under some
conditions, timed distance-bounding security and causality-based
distance-bounding are equivalent, thus rendering the verification
problem more amenable to automation.

The reduction to causality-based verification for distance-bounding
described in [18] is sound assuming a number of aspects. First, it
must be one and the same agent (i.e., the reader) who timestamps
the RTTs and checks these against the time-bound. This is not the
case in the new and stronger versions of PayPass-RRP proposed
in [7]: e.g., in PayBCR, the reader timestamps the exchange be-
tween itself and the card, then takes the RTT measurement, yet the
issuing-bank also (re-)verifies these RTT timestamps. Secondly, the
time-stamping party (i.e., the reader) must be honest, which is not
the case in the strong, collusive-relay attacks. Third, the cards are
modelled as fixed at one location throughout the protocol execution:
i..e, neither does the most-related prior formalism in [18] nor others
(e.g. [8, 12]) capture mobility of parties, which is a realistic aspect
of payment systems and could possibly lead to attacks.

The PayPass-RRP-based protocols presented in [7] were not
implemented or tested (for security and/or efficiency), Furthermore,
there are no public implementations of a reader for MasterCards
PayPass-RRP protocol. Therefore questions remain over how well
these protocols would work in practice given the physical constraints

of the hardware involved. We answer these questions by fully imple-
menting these protocols and carrying out a series of tests.

Contributions. In this work, we aim to overcome the aforemen-
tioned shortcomings of the state of the art. Specifically, our main
contributions are as follows:

(1) Extending the work in [12], we put forward an applied-pi cal-
culus that can capture advanced features of distance-bounding
protocols featured in new payment protocols: mobility of
parties and time-stamping by one party and verification by
another.

(2) Following the ideas in [18], we then formulate a causality-
based definition of distance-bounding (which does away with
most timing aspects of these protocols). Importantly, we prove
that timed-based security is equivalent to causality-based se-
curity, even in our strong model mentioned above. This theo-
retical result gives formal guarantees that certain physicality-
based protocols can be checked easily in different provers, in
a language that abstracts away time and location. We encode
PayBCR, PayCCR and variants, alongside a causality-based
definition of secure payments in the fully automatic ProVerif
prover, and we discuss the analysis results obtained on these
protocols.

(3) We provide concrete evidence that the currently proposed
EMV distance bounding protocols can work in practice. We
do this by implementing a reader for PayPass-RRP, and
PayBCR including TPM calls. Using a PayPass-RRP test
card from MasterCard and a tool from EMV-centred consul-
tancy Consult Hyperion that emulates the bank backend, we
fully test these implementations and provide timing infor-
mation. We find that both protocols can stop relays that add
a delay of 10ms or more, and therefore these protocols are
effective at stopping relay attacks using e.g. mobile phones
and wi-fi. However, neither protocol (when implemented on
standard hardware) will be effective at stopping relays that
add a delay of less than 5ms. We find that a factor here is
the variance of the card processing time, and therefore no
protocol implemented on such a card could stop such a relay.
This work provides the first public empirical analysis of Mas-
terCard’s PayPass-RRP and it also shows that using TPMs
can be an effective measure for stopping mobile phone based
relay attacks.

Outline. We first recall in Section 2 the protocols presented in [7]
which are studied in this work. We present our formal model in
Section 3. Then, we revisit the characterisation proposed in [18].
Thanks to this reduction result presented in Section 4, we are able to
analyse the security of the protocols presented in [7] relying on the
verification tool ProVerif. These results are presented in Section 4.3.
In Section 5, we report on the implementations we have performed,
as well as the experiments we have done to evaluate the efficiency
and the robustness to relay attacks of our own implementations of
PayPass-RRP and PayBCR.

2 BACKGROUND
In this section, we recall relevant details on the protocols introduced
in [7] and which are both based on Mastercard’s PayPass-RRP.



2.1 On TPMs
Our payment protocols (described below) make use of a Trusted
Platform Module (TPM). A TPM is a tamper-resistant hardware chip
providing various functionalities, mainly of a cryptographic nature.
TPMs also facilitate robust timing functionalities, which we use in
our protocols. Concretely, the TPM2_GetTime command2 of the
TPM takes the handle for a signature scheme and some input, and it
returns a signature over said input and over

TPM-AttestedTime= (Clock, Time).
The latter is the timing data-structure that the TPM keeps: with
the first being a non-volatile representation of the real time, set
when the TPM is created [16], and the second being a volatile
value corresponding to the time passed since the last boot-up of
the TPM (see page 205 of [16]). So, as such, TPM2_GetTime()
can produce a signed version of a timestamped nonce, with attested
time-information.

According to the body standardising the TPM, namely TCG, the
attacks onto TPM-AttestedTime are mainly relevant w.r.t. the
TPM Clock (see 36.3 and 36.6 [16]), as this has a non-volatile
dimension, unlike Time. Notably, if the TPM is powered down, the
Clock value is correct when the TPM reboots. The threats w.r.t.
Clock documented by TCG, are arguably immaterial in practice
(see page 206 of [16]), and –as such– in this paper and as in [7],
we assume that the timestamps given by the TPM via the command
TPM2_GetTime are timing-secure (in the sense that TCG consid-
ers it overwhelmingly impossible to tamper with timestamping in
this command).

2.2 PayBCR & PayCCR: High-level Description
Both of our protocols enhance PayPass-RRP by adding a TPM
onto a PayPass-RRP reader. This TPM is called twice, each time to
timestamp an input, such that the difference of the two timestamps
closely approximates the roundtrip time (RTT) between the card
and the reader. Moreover, PayCCR and PayBCR record this
timestamping information, later to be used by the card or the issuing
bank to re-verify the RTT measurements alongside other checks
they normally make in PayPass-RRP. On the one hand, PayBCR
does not modify the card side of PayPass-RRP and thus it is the
issuing bank who does the verification of the TPM’s timestamps. On
the other hand, PayCCR leaves the PayPass-RRP reader-to-bank
specifications unchanged, and modifies the PayPass-RRP card so
that it is now the card (and not the bank – as per PayBCR) who
checks the RTT time-stamping mediated by the TPM onboard the
PayPass-RRP reader. Below, we will mainly recall PayBCR (see
Figure 1).

The PayPass-RRP protocol, that is at the basis of the two proto-
cols considered here, is summarised in Appendix B; this protocol
is similar to the “PaySafe” protocol that was originally proposed
and analysed in [9]. More details about the protocols PayBCR and
PayCCR can be found in [7]. In PayBCR, firstly, the EMV reader
sends its nonce 𝑁𝑅 to the TPM to be timestamped. The TPM uses
the TPM2_GetTime command to timestamp this nonce and it pro-
duces a randomised signature 𝜎1 on the timestamped nonce. The

2This command is supported only in TPM 2.0, which is the current set of specifications
of the TPM. More precisely, on TPM2.0, TPM2_GetTime() is supported from revision
1.38 (and not on earlier revisions). TPM 2.0 v 1.38 is available by several manufacturers.

signature 𝜎1 from the TPM is sent to the card instead of the first
nonce UN in PayPass-RRP. To keep the protocol compliant with
PayPass-RRP, the PayBCR reader actually sends the card only a
truncation of 𝜎1, denoted as 𝜎 ′1. The card’s response (𝑁𝐶 as per Pay-
Pass-RRP) is sent to the TPM, which similarly yields a randomised
signature 𝜎2. The SDAD (Signed Dynamic Application Data) is a
digital signature by the card on the AC, the timing information 𝑡𝑑 and
𝜎 ′1 (in place of UN ). Finally, the card’s PayPass-RRP time-bound
𝑡𝑑 , 𝜎1, 𝜎2, 𝑡1 and 𝑡2 and the AC are sent to the bank. With these, the
bank can check the difference between the timestamps to ensure the
card and EMV reader where close.

For completeness, we give the description of PayCCR too; see
Figure 6, in Appendix C. Its details are very similar to those of
PayBCR, only that the card does the verification of the timestamping
signatures.

3 A SECURITY MODEL WITH MOBILITY
In this section, we describe a formalism allowing us to faithfully
model security protocols based on time and location like those in-
troduced in Section 2. Our security model is expressive enough to
model a variety of cryptographic primitives, and is also suitable to
capture mobility, i.e., the fact that agents executing the protocol may
move during the execution, including during the timing phase. Our
formalism is close to the applied-pi calculus [1] which is the calculus
used in input of the ProVerif tool [3]. On the one hand, we extend
this calculus with several features in order to model time, location
and mobility. On the other hand, some applied-pi constructions, e.g.,
replication, parallel, are only used to define configurations (and not
the protocols themselves), i.e., these are not part of our protocol
syntax.

3.1 Agents and Messages
Participants in a protocol are called agents, and the set of agents
is denoted A. We also consider a fixed and arbitrary set M ⊆ A
to represent malicious agents. During a protocol execution, partic-
ipants exchange messages through the network. Messages can be
atomic data such as nonces, keys denoted 𝑛, 𝑘 ∈ N , agent names
denoted 𝑎, 𝑏 ∈ A, or simply public constants denoted 𝑐, 𝑐1, 𝑐2 ∈ Σ0.
We denote Σ+0 = Σ0 ⊎ A. More complex messages can also be ex-
changed relying on cryptographic primitives modelled through a set
of function symbols Σ called a signature. Such a signature Σ is split
into constructor and destructor symbols, i.e., Σ = Σ𝑐 ⊎ Σ𝑑 . We also
consider a set X of message variables, denoted 𝑥,𝑦, 𝑧 . . ., as well
as a set W of handles, denoted w1,w2, . . .. Variables in X model
arbitrary data expected by a protocol participant, while variables
in W are used to store messages learnt by the attacker. The set R+
denotes non-negative real numbers and is used to model time. Given
a signature F and a set 𝐷 of atomic data, we denote T (F , 𝐷) the
set of terms built from 𝐷 using symbols in F . Given a term 𝑢, we
denote vars(𝑢) the variables occurring in 𝑢. A constructor term is a
term in T (Σ𝑐 ,N ∪ Σ+0 ∪ X ∪ R+).

EXAMPLE 1. To model the PayBCR protocol presented in Sec-
tion 2, we consider the signature ΣBCR = Σ𝑐 ⊎ Σ𝑑 :

• Σ𝑐 = {senc, shk, sign, pubk, seck, mac, ⟨ ⟩, ok}, and
• Σ𝑑 = {sdec, verify, proj1, proj2, eq}.



Bank TPM Reader Card

𝑡𝑑 , 𝐾𝑀 , 𝑃𝑟𝑖𝑣𝐶
𝐶𝑒𝑟𝑡𝑃𝑟𝑖𝑣𝐶𝐴 (𝑃𝑢𝑏𝐵)
𝐶𝑒𝑟𝑡𝑃𝑟𝑖𝑣𝐵 (𝑃𝑢𝑏𝐶)
𝑁𝐶 ∈𝑅 {0, 1}32

𝑃𝑢𝑏𝐶𝐴, 𝑁𝑅 ∈𝑅 {0, 1}32𝑃𝑟𝑖𝑣𝑆𝑖𝑔𝑛𝑇𝑃𝑀𝐶𝑒𝑟𝑡 (𝑃𝑢𝑏𝑆𝑖𝑔𝑛𝑇𝑃𝑀 ) , 𝐾𝑀

TPM2_GetTime(𝑁𝑅 )

𝑡1 := TPM-AttestedTime;
𝜎1 = 𝑆𝑖𝑔𝑛𝑇𝑃𝑀 (𝑡1 ,𝑁𝑅 )

𝑡1 , 𝜎1 𝜎′1

𝑁𝐶 , 𝑡𝑑TPM2_GetTime(𝑁𝐶 )timed

𝑡2 := TPM-AttestedTime;
𝜎2 = 𝑆𝑖𝑔𝑛𝑇𝑃𝑀 (𝑡2, 𝑁𝐶 )

𝑡2 , 𝜎2 READ RECORD

Certs

GEN AC, 𝑑𝑎𝑡𝑎, . . .

𝐾𝑆 = Enc𝐾𝑀 (ATC)
AC=MAC𝐾𝑠 (ATC,data,𝜎′1 ,..)
SDAD= Sign𝑃𝑟𝑖𝑣𝐶 (AC, 𝑁𝐶 , 𝑡𝑑 ,
𝜎′1 ,. . . )

SDAD, AC

Check SDAD
AC, 𝑡1 , 𝑡2 , 𝜎1 , 𝜎2 , 𝑡𝑑 , SDAD, Certs,. . .

Check 𝑡1 in 𝜎1 , 𝑡2 in 𝜎2
Check 𝜎1, 𝜎2 & 𝑁𝐶 , 𝑁𝑅 , 𝑡𝑑 in SDAD
Check AC, Check 𝑡2 − 𝑡1 ≤ 𝑡𝑑

Figure 1: PayBCR [7]: Mastercard’s PayPass-RRP with Collusive-Relay Protection & No Changes to the Card

The symbols in ΣBCR allows one to construct terms to represent
cryptographic messages, e.g., ciphertext based on the symmetric
encryption symbol senc (of arity 2), and signature using the symbol
sign (of arity 2). The corresponding decryption and verification
schemes are modelled by the sdec and verify symbols. The symbols
pubk and seck, each of arity 1, are used to model public/private
keys, whereas the symbol shk of arity 2 is used to model symmetric
key shared between two agents. The symbol mac models a MAC
scheme. The symbols ⟨ ⟩, proj1, and proj2 represent the pairing and
projections operators. Lastly, we consider two symbols eq (arity 2)
and the constant ok that are used to check an equality between two
terms.

In order to give a meaning to constructor symbols, we equip con-
structor terms with an equational theory. We assume a set of equa-
tions E over T (Σ𝑐 ,X) and define =E as the smallest congruence con-
taining E that is closed under substitutions and under bijective renam-
ing. Then, we give a meaning to destructors through a rewriting sys-
tem, i.e., a set of rewriting rules of the form g(𝑡1, . . . , 𝑡𝑛) → 𝑡 where
g ∈ Σ𝑑 and 𝑡, 𝑡1, . . . , 𝑡𝑛 ∈ T (Σ𝑐 ,X). A term 𝑢 can be rewritten in 𝑣 if
there is a position 𝑝 in 𝑢, and a rewriting rule g(𝑡1, . . . , 𝑡𝑛) → 𝑡 such
that 𝑢 |𝑝 = g(𝑡1, . . . , 𝑡𝑛)𝜃 for some substitution 𝜃 , and 𝑣 = 𝑢 [𝑡𝜃 ]𝑝 ,

i.e., 𝑢 in which the term at position 𝑝 is replaced by 𝑡𝜃 . Moreover,
we assume that 𝑡1𝜃, . . . , 𝑡𝑛𝜃 as well as 𝑡𝜃 are constructor terms. As
usual, we consider sets of rewriting rules that yield a convergent
rewriting system, and we denote 𝑢↓ the normal form of a term 𝑢.

EXAMPLE 2. The properties of the cryptographic primitives in-
troduced in Example 1 are reflected through the following rewriting
system:

sdec(senc(𝑥,𝑦), 𝑦) → 𝑥

verify(sign(𝑥,𝑦), pubk(𝑦)) → 𝑥

eq(𝑥, 𝑥) → ok

proj1 (⟨𝑥1, 𝑥2⟩) → 𝑥1
proj2 (⟨𝑥1, 𝑥2⟩) → 𝑥2

The first rule is the usual rewriting rule to model symmetric en-
cryption. Depending on whether we want to model a decryption
algorithm that may fail or not, we can either consider sdec as a de-
structor together with the rewrite rule sdec(senc(𝑥,𝑦), 𝑦) → 𝑥 as we
did here, or consider both symbols as constructors, together with the
equation sdec(senc(𝑥,𝑦), 𝑦) = 𝑥 . In the latter case, sdec(𝑐, 𝑘) will
be considered as a “valid” message. The second rule is used both to
check a signature and to extract its content. The term seck(𝑎) is used
to represent the private key of the agent 𝑎, whereas pubk(seck(𝑎))
models its public counterpart. The third one models an equality



check. Note that eq(𝑢, 𝑣) reduces to a constructor term if, and only
if, 𝑢 =E 𝑣 (i.e., 𝑢 = 𝑣 here since E = ∅). The two rules in the second
column model the projection operators.

For modelling purposes, we split the signature Σ into two parts,
Σpub and Σpriv. An attacker builds his own messages by applying
public function symbols to terms he already knows and which are
available to him through variables in W. Formally, a computation
done by the attacker is a recipe, i.e., a term in T (Σpub, Σ+0∪W∪R+).

EXAMPLE 3. Among the symbols in ΣBCR, only the symbols
shk and seck are in Σpriv. Let 𝑢0 = senc(⟨𝑛, 𝑘⟩, shk(𝑏, 𝑐)), and
𝑢1 = shk(𝑏, 𝑐). We have that proj2 (sdec(𝑢0, 𝑢1))↓ = 𝑘. The term
proj2 (sdec(𝑢0, 𝑢1)) models the application of the decryption algo-
rithm on top of 𝑢0 using the key 𝑢1 followed by the application of the
second projection.

3.2 Protocols
Single protocol roles are modelled through a process algebra closed
to the one used as input in the ProVerif verification tool. Processes
are given by the following grammar:

𝑃,𝑄 := 0
| new 𝑛.𝑃
| in(𝑥) .𝑃
| out(𝑢).𝑃
| let 𝑥 = 𝑣 in 𝑃 else 𝑄
| gettime(𝑥) .𝑃
| check(𝑢1, 𝑢2, 𝑢3).𝑃
| claim(𝑢1, 𝑢2, 𝑢3, 𝑢4).𝑃

where 𝑥 ∈ X, 𝑛 ∈ N , 𝑣 ∈ T (Σ,N∪Σ+0 ∪X∪R+), and𝑢,𝑢1, . . . , 𝑢4 ∈
T (Σ𝑐 ,N ∪ Σ+0 ∪ X ∪ R+).

The first four instructions are all standard to the applied pi-
calculus. As usual, the null process does nothing. The restriction
new 𝑛.𝑃 generates a fresh name and then executes 𝑃 . We have con-
structions to model input and output actions. The let construction
tries to evaluate 𝑣 to get a constructor term 𝑢, then 𝑥 is bound to 𝑢
and 𝑃 is executed; if the evaluation of 𝑣 fails, then 𝑄 is executed.
The last three instructions are used to model distance bounding
protocols. The instruction gettime(𝑥) bounds the current time to
the variable 𝑥 . This is used to add a timestamp in some messages.
The check(𝑢1, 𝑢2, 𝑢3) instruction indicates that a process is check-
ing the times 𝑢1 and 𝑢2 against some expected time bound 𝑢3. The
claim(𝑢1, 𝑢2, 𝑢3, 𝑢4) indicates that an agent executing it believes that
there has been a successful run of the protocol between 𝑢1 and
𝑢2 with the challenges and responses exchanged between times 𝑢3
and 𝑢4. As we will see below, the two events, namely claim and
check do not interfere with the semantics of the processes rather we
rely on them to express our security properties.

We write fv(𝑃) for the set of free variables occurring in 𝑃 , i.e., the
set of variables that are not in the scope of an in, a let, or a gettime
instruction. We consider parametrised processes, 𝑃 (𝑧0, . . . , 𝑧𝑛), where
𝑧0, . . . , 𝑧𝑛 are variables from a special set Z (disjoint from X and W).
Intuitively, these variables will be instantiated by agent names,
and 𝑧0 corresponds to the name of the agent who executes the pro-
cess. A role 𝑅 = 𝑃 (𝑧0, . . . , 𝑧𝑛) is a parametrised process such that
fv(𝑅) ⊆ {𝑧0, . . . , 𝑧𝑛} and that does not contain element in R+. This

allows us to ensure that elements in R+ occurring in an execution
have been either introduced by our gettime instruction, or by the
attacker. A protocol is a finite set of roles.

EXAMPLE 4. The TPM check time functionality will access a
nonce and sign this along with the current time. We write this func-
tionality using our syntax as:

TPM(𝑧0) = in(𝑥𝑛) .
gettime(𝑥𝑡 ) .
out(sign(⟨𝑥𝑡 , 𝑥𝑛⟩, seck(𝑧0))) .0

The parameter 𝑧0 will be instantiated by an agent name. Such a
process is waiting for a message, and outputs its signature. The
signature is done using the key seck(𝑧0) and a timestamp is added
into the signature. The current time is obtained using the gettime
instruction.

3.3 Mobility Model
In order to faithfully model the fact that transmitting a message
takes time, we use the notion of mobility plan whose main purpose
is to indicate the location of each agent at a given time. Then, a
message 𝑚 sent by an agent 𝑎 at time 𝑡𝑎 and received by another
agent 𝑏 at time 𝑡𝑏 must satisfy that the Euclidean distance between
the two locations:

(1) Loc(𝑎, 𝑡𝑎), i.e., the location of 𝑎 at time 𝑡𝑎 , and
(2) Loc(𝑏, 𝑡𝑏 ), i.e., the location of 𝑏 at time 𝑡𝑏

is less or equal than (𝑡𝑏 − 𝑡𝑎) · c0. Here, c0 is the transmission speed,
and is supposed to be constant in our model (e.g., the speed of the
light). In this way, the physical law that messages cannot travel faster
than the speed of light is made explicit. As c0 is to be constant in
our model, distance between two locations will be represented by
the time it takes for a message to travel from one point to the other.
Hence, we have that Dist : R3 × R3 → R+ is defined as follows:

Dist (𝑙1, 𝑙2) =
∥𝑙2 − 𝑙1∥

c0
for any 𝑙1, 𝑙2 ∈ R3

with ∥·∥ : R3 → R+ the Euclidean norm.

A mobility plan Loc is a function: A × R+ → R3 defining the
position of each agent in space at any time. To avoid unrealistic
behaviours where agents will travel faster than messages, we assume
that for any 𝑎 ∈ A and 𝑡1, 𝑡2 ∈ R+ such that 𝑡1 ≤ 𝑡2, we have that:

Dist (Loc(𝑎, 𝑡1), Loc(𝑎, 𝑡2)) ≤ 𝑡2 − 𝑡1 .

We note that this requires that our mobility plans are continuous,
with no agents making discrete jumps in location.

EXAMPLE 5. To illustrate the notion of mobility plan, we may
consider the function Loc0 such that Loc0 (tpm0, 𝑡) = (0, 0, 0), and
Loc0 (card0, 𝑡) = (10, 0, 0), and Loc0 (bk0, 𝑡) = (100, 0, 0) for any
𝑡 ∈ R+, and Loc0 (𝑎, 𝑡) = (0, 0, 0) otherwise (i.e., for any 𝑎 ∈ A ∖
{tpm0, card0, bk0}). This models a very simple mobility plan where
all the agents are actually at a fixed position and they never move:
card0 is at distance 10 from tpm0 and the agent bk0 is even further.
The other entities are all located at position (0, 0, 0) at the same
place as tpm0.



TIM (P;Φ; 𝑡) −→Loc (P;Φ; 𝑡 + 𝛿) with 𝛿 > 0

NEW ( ⌊new 𝑛.𝑃⌋ 𝑎 ⊎ P;Φ; 𝑡) 𝑎,𝑡,𝜏−−−−→Loc ( ⌊𝑃{𝑛 ↦→ 𝑛′}⌋ 𝑎 ⊎ P;Φ; 𝑡) with 𝑛′ ∈ N fresh

OUT ( ⌊out(𝑢).𝑃⌋ 𝑎 ⊎ P;Φ; 𝑡)
𝑎,𝑡,out(𝑢)
−−−−−−−−→Loc ( ⌊𝑃⌋ 𝑎 ⊎ P;Φ ⊎ {w 𝑎,𝑡−−→ 𝑢}; 𝑡) with w ∈ W fresh

LET-THEN ( ⌊let 𝑥 = 𝑣 in 𝑃 else 𝑄⌋ 𝑎 ⊎ P;Φ; 𝑡) 𝑎,𝑡,𝜏−−−−→Loc ( ⌊𝑃{𝑥 ↦→ 𝑣↓}⌋ 𝑎 ⊎ P;Φ; 𝑡) when 𝑣↓ ∈ T (Σ𝑐 ,N ∪ Σ+0 ∪ R+)

LET-ELSE ( ⌊let 𝑥 = 𝑣 in 𝑃 else 𝑄⌋ 𝑎 ⊎ P;Φ; 𝑡) 𝑎,𝑡,𝜏−−−−→Loc ( ⌊𝑄⌋ 𝑎 ⊎ P;Φ; 𝑡) when 𝑣↓ ∉ T (Σ𝑐 ,N ∪ Σ+0 ∪ R+)

CLAIM ( ⌊claim(𝑢1, 𝑢2, 𝑢3, 𝑢4) .𝑃⌋ 𝑎 ⊎ P;Φ; 𝑡)
𝑎,𝑡,claim(𝑢1,𝑢2,𝑢3,𝑢4)−−−−−−−−−−−−−−−−−−→Loc ( ⌊𝑃⌋ 𝑎 ⊎ P;Φ; 𝑡)

CHECK ( ⌊check(𝑢1, 𝑢2, 𝑢3).𝑃⌋ 𝑎 ⊎ P;Φ; 𝑡)
𝑎,𝑡,check(𝑢1,𝑢2,𝑢3)−−−−−−−−−−−−−−−−→Loc ( ⌊𝑃⌋ 𝑎 ⊎ P;Φ; 𝑡)

GTIM ( ⌊gettime(𝑥) .𝑃⌋ 𝑎 ⊎ P;Φ; 𝑡)
𝑎,𝑡,gettime
−−−−−−−−−→Loc ( ⌊𝑃{𝑥 ↦→ 𝑡}⌋ 𝑎 ⊎ P;Φ; 𝑡 ′) with 𝑡 ′ > 𝑡

IN ( ⌊in(𝑥) .𝑃⌋ 𝑎 ⊎ P;Φ; 𝑡)
𝑎,𝑡,in(𝑢)
−−−−−−−→Loc ( ⌊𝑃{𝑥 ↦→ 𝑢}⌋ 𝑎 ⊎ P;Φ; 𝑡)

when there exist 𝑏 ∈ A, and 𝑡𝑏 ∈ R+ such that 𝑡 ≥ 𝑡𝑏 + Dist (Loc(𝑏, 𝑡𝑏 ), Loc(𝑎, 𝑡)) and:

• either 𝑏 ∈ A ∖M and there exists (w 𝑏,𝑡𝑏−−−→ 𝑢) ∈ Φ
• or 𝑏 ∈ M and Φ ⊢ 𝑢 by 𝑏 at time 𝑡𝑏 w.r.t. Loc.

Figure 2: Semantics of our calculus parametrised by the mobility plan Loc.

3.4 Semantics
Our semantics is given by a transition system over configurations
that manipulates extended processes, i.e., expressions of the form
⌊𝑃⌋ 𝑎 with 𝑎 ∈ A and 𝑃 a process such that fv(𝑃) = ∅. Intuitively, 𝑃
describes the actions of agent 𝑎. In order to store the messages that
have been outputted so far, we extend the notion of frame to keep
track of the time at which the message has been outputted and by
whom. We rely on the special symbol ★ to indicate that a message is
known by any agent. This will be used to define the initial frame.

Definition 1. A configuration K is a tuple (P;Φ; 𝑡) where:

• P is a multiset of extended processes ⌊𝑃⌋ 𝑎;

• Φ = {w1
𝑎1,𝑡1−−−−→ 𝑢1, . . . ,w𝑛

𝑎𝑛,𝑡𝑛−−−−→ 𝑢𝑛} is an extended frame,
i.e., a substitution such that w𝑖 ∈ W, 𝑢𝑖 ∈ T (Σ𝑐 ,N ∪ Σ+0 ∪
R+), 𝑎𝑖 ∈ A ∪ {★} and 𝑡𝑖 ∈ R+ for 1 ≤ 𝑖 ≤ 𝑛;

• 𝑡 ∈ R+ is the global time of the system.

EXAMPLE 6. A typical configuration for our running example is
K0 = (P0;Φ0; 0) with:

P0 = { ⌊TPM(tpm0)⌋ tpm0
; ⌊Bank(bk0)⌋ bk0 ; ⌊Card(card0)⌋ card0 }.

This simply models a scenario where tpm0, bk0, and card0 execute
a single session of their role. Regarding the initial frame, we may
consider:

Φ0 = { w1
★,0−−→ pubk(seck(tpm0)),

w2
★,0−−→ pubk(seck(bk0)),

w3
★,0−−→ pubk(seck(card0))}.

This initial frame reveals the public key of the 3 agents to the attacker.
We may want to also reveal the certificates built by the bank for the
card and the tpm. This will correspond to add the following terms
into the frame:

• sign(⟨cardCert, ⟨card0, pubk(seck(card0))⟩⟩, seck(bk0));

• sign(⟨tpmCert, ⟨tpm0, pubk(seck(tpm0))⟩⟩, seck(bk0)).
The terms cardCert and tpmCert are public constants from Σ0 used
to avoid a possible confusion between the two kinds of certificates
(the one issued by the bank to certify a card, and the one used to
certify a TPM). In case such a confusion is possible, we may model
the two types of certificates relying on the same constant cert.

Given an extended frame Φ, and a mobility plan Loc, we say that
a term 𝑢 is deducible from Φ by 𝑏 ∈ A at time 𝑡0, denoted Φ ⊢ 𝑢 by 𝑏
at time 𝑡0 w.r.t. Loc, if there exists a recipe 𝑅 such that 𝑅Φ↓ =E 𝑢,

and for all w ∈ vars(𝑅) we have that (w 𝑐,𝑡−−→ 𝑣) ∈ Φ for some 𝑣 , and
• either 𝑐 = ★;
• or 𝑡0 ≥ 𝑡 + Dist (Loc(𝑐, 𝑡), Loc(𝑏, 𝑡0)).

In other words, 𝑢 has to be forgeable by the agent 𝑏 at time 𝑡0 and
thus messages needed to forge 𝑢 have to be available in due time.

Given a mobility plan Loc, the semantics of processes is formally
defined by a transition system over configurations. This transition
system is given in Figure 2 and is parametrised by Loc. This piece
of information is omitted when clear from the context. We will only
comment on some key cases.

The rule TIM allows time to elapse, and the rule GTIM allows an
agent to get the global time of the system. Note that two consecutive
gettime instructions will return two different values since we force
time to elapse. This models the fact that such an instruction cannot
be executed instantaneously, and that two remote agents cannot
perfectly co-ordinate their actions. This also helps us establish the
soundness of our abstraction by making it possible for us to get rid of
time by replacing real numbers issuing from a gettime instruction
by different public constants.

The IN rule is more complex (than in normal applied-pi) since
we have to ensure that enough time has passed to make it possible
for the message to travel from where it was produced Loc(𝑏, 𝑡𝑏 ) to
where it is being received Loc(𝑎, 𝑡).



As noted above, the claim and check instructions are simple
events (as those used in ProVerif). They do not interfere with the
semantics but are used to model security properties.

EXAMPLE 7. To illustrate the semantics, we consider the con-
figuration K ′

0 = ( ⌊TPM(tpm0)⌋ tpm0
;Φ0; 0) and the mobility plan

Loc0 as given in Example 5.

K ′
0 −→ ( ⌊TPM(tpm0)⌋ tpm0

;Φ0; 1.1)
tpm0,1.1,in(ok)−−−−−−−−−−−−−→

tpm0,1.1,gettime−−−−−−−−−−−−−−→ ( ⌊out(𝑚)⌋ tpm0
;Φ0; 1.2)

tpm0,1.2,out(𝑚)
−−−−−−−−−−−−−−→Loc0 ( ⌊0⌋ tpm0

;Φ1; 1.2)

where:
• 𝑚 = sign(⟨1.1, ok⟩, seck(tpm0)), and

• Φ1 = Φ0 ∪ {w4
tpm0,1.2−−−−−−−→𝑚}.

The first input is possible since Φ0 ⊢ ok by 𝑐 ∈ M at time 1.1.
Actually such a constant is even deducible at time 0.

We may note that 𝑚 is deducible from Φ1 by tpm0 at time 1.2.
Actually any agent other than card0 and bk0 are able to deduce𝑚
at time 1.2. Remember that Loc0 (𝑎, 𝑡) = (0, 0, 0) for any 𝑡 and any 𝑎
different from tpm0 and bk0.

3.5 Threat Model
Before we present the security property we wish to analyse, we
summarise the threat model implied by Section 2 (for the TPM) and
this current section (for the rest), via the language, mobility/time
encodings, and all the (other) protocol semantics described above.
Thus, our attacker model is as follows:

• readers, cards, TPMs3 can become malicious/corrupted;
• with respect to cryptographic primitives, we assume a normal

Dolev-Yao (DY) attacker-model for all malicious agents;
• with respect to communication channels, malicious agents

acts as expected (i.e., can block, inject, modify message as a
DY adversary), but they are bound by our mobility plan and
our timing rules as follows:
– in total, there can be an unbounded number of (statically4)

corrupted/malicious agents, at any given location;
– all corrupted/malicious agents adhere to the laws of our

model/physics: i.e., corrupt agents cannot transmit mes-
sages faster than the other agents, and they cannot move
faster than the other agents (who, in turn, travel overwhelm-
ingly more slowly than messages).

3.6 Security Properties
As explained in above, we are interested in analysing a property
(formalised in Def. 3) that pertains to secure/correct contactless
payments made in physical proximity. Roughly, this property ensures
that when a bank finishes the protocol successfully it is because a
transaction took place between a card and a reader/TPM, and the card
and the reader have been close during this transaction. This proximity

3In practice, TPMs can only be corrupted within the TCG-driven model described in
Section 2: that is, the global clocks of TPMs can essentially not be tampered with. In
our formalism however, the threat model is stronger, allowing even for time-corruption
on the TPM.
4This means that all corruption occurs before the protocol starts executing, which is
usual in symbolic verification.

is ensured through the use of the instruction check(𝑡1, 𝑡2, 𝛿) whose
intended meaning is that timing constraint 𝑡2 − 𝑡1 ≤ 𝛿 has been
verified by some honest agent.

As usual to analyse a security property, we rely on events. The
event claim(tpm0, card0, 𝑡

0
1 , 𝑡

0
2 ) will be launched when the bank fin-

ishes the protocol, seemingly with tpm0 and card0, and, this claim
event occurs after a check event took place – whereby card0 was
close to tpm0 between times 𝑡01 and 𝑡02 .

Before we can give our security definition, we need to define a few
helper-notions, like that of configuration. An initial frame Φ0 is an

extended frame such that 𝑎 = ★ and 𝑡 = 0 for any (w 𝑎,𝑡−−→ 𝑢) ∈ Φ0.

Definition 2. A configuration K = (P0;Φ0; 0) is a valid initial
configuration for a set of roles R, if Φ0 is an initial frame, and for
each ⌊𝑃⌋ 𝑎 ∈ P0, there exists 𝑅(𝑧0, 𝑧1, . . . , 𝑧𝑘 ) ∈ R and 𝑎1, . . . , 𝑎𝑘 ∈
A such that 𝑃 = 𝑅(𝑎, 𝑎1, . . . , 𝑎𝑘 ).

Roughly, we consider initial configurations made up of instances
of the roles of the protocols, and we only consider roles executed
by agents located at the right place, i.e., the agent 𝑎 who executes
the role must correspond to the first argument of the parametrised
process. Note that, according to the definition above, a single agent
can play different roles (e.g., the bank and the card).

EXAMPLE 8. The frame Φ0 described in Example 6 is an initial
frame, and the configurations K0, as well as the configuration K ′

0
given in Example 7 are valid initial configurations for the protocol
payBCR. Although valid, these configurations are rather poor and
additional scenarios will be (of course) considered when performing
the security analysis. Typically, we will consider many agents, and
we will assume that each agent can execute the protocol many times.

Our result applies on all the valid initial configurations. However,
to give the possibility to discard some unrealistic configurations (that
may depend on the use case) during the security analysis, our main
result is parametrised by a set S of valid initial configurations.

We are now able to formally state the security property we want
to consider.

Definition 3. A protocol P is DB-secure w.r.t. a set S of valid initial
configurations if for all K0 ∈ S, for all mobility plan Loc, for all
execution exec such that:

K0
(𝑎1,𝑡1,act1) ...(𝑎𝑛,𝑡𝑛,act𝑛) ·(𝑏0,𝑡,claim(𝑏1,𝑏2,𝑡01 ,𝑡02 ))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Loc K

we have that:
• either 𝑏1 ∈ M, or 𝑏2 ∈ M;
• or act𝑘 = check(𝑡01 , 𝑡

0
2 , 𝑡

0
3 ) for some 𝑘 ≤ 𝑛 such that:

𝑡02 − 𝑡
0
1 ≥ Dist (Loc(𝑏1, 𝑡01 ), Loc(𝑏2, 𝑡))

+ Dist (Loc(𝑏2, 𝑡), Loc(𝑏1, 𝑡02 ))

for some 𝑡01 ≤ 𝑡 ≤ 𝑡02 .

We now discuss Definition 3, from different viewpoints.

Main Meaning of Definition 3. First note that Definition 3 does
not bind entities 𝑏0, 𝑏1, . . . , to roles. So, in the next, we will try to
render the meaning of the definition via one of its several possible
representation. Namely, in such an instance of Definition 3, we say
that a payment protocol is secure if at the end of its execution an



agent 𝑏0 (e.g., the bank) can make a claim that links an agent 𝑏1
(e.g., a TPM) and an agent 𝑏2 (e.g. a card) to two timestamps 𝑡01
and 𝑡02 in the following sense: in the execution, there was a check
w.r.t. 𝑡01 and 𝑡02 and another time-value 𝑡03 (which is given generally
as a constant time-bound in the protocol) and this check denotes that
the distance between 𝑏1 and 𝑏2 was within the bound between the
timepoints 𝑡01 and 𝑡02 (i.e., 𝑡02 − 𝑡

0
1 ≤ 𝑡03 , and this gives an upper bound

on the distance between 𝑏1 and 𝑏2.).

Observations w.r.t Definition 3. Firstly, note that the check is
performed by agent 𝑎𝑘 which is not fixed to being 𝑏0, 𝑏1 or 𝑏2.
Importantly, as such, in this definition, we may have the check be
performed by an agent that is not 𝑏0 who in fact makes the final
claim.

Secondly, note that indeed it is in one of the possible executions
that the agent 𝑏0 is the bank, the agent 𝑏1 is a TPM and 𝑏2 is a card;
this type of execution is of interest to us. To this end, Definition 3
stipulates two alternate security-relevant cases:

• be it: the card 𝑏2 is dishonest, or the TPM 𝑏1 is dishonest,
or both are dishonest, in which case Definition 3 does not
require any further condition and one can declare the protocol
trivially DB-secure;

• alternatively, we are in the case where the TPM and the card
are honest, in which case the definition contains further con-
ditions (namely the restrictions on check have to be fulfilled
for the protocol to be declared DB-secure.)

We are implicitly interested in the second case of the above, and
particularly in the case where the reader is malicious.

Finally, the property is meant to capture an extension of relay-
resistance or security against a man-in-the-middle attacker that per-
forms a relay-based attack, applied to contactless payments. Our
definition is in the spirit of [18]. However, note that in our seman-
tics/model, it is strictly stronger than the definition in [18], as follows:
(a) the property is extended to make a statement w.r.t. three parties
instead of two parties; (b) it contains a statement on the checking
of the timestamps (as [18] did), but also a claim made on top of
this timestamps’ check potentially by another party in the protocol
(which was not the case in [18]); (c) the parties 𝑏1 and 𝑏2 are mobile
(which was not the case in [18]). In this vain, not only does our defi-
nition lift [18] to cover the notion of collusive-relaying in [7], but
also it strengthen that – for instance, w.r.t. to allowing for mobility
of parties.

Time-bounds vs. Distance-bounds in Definition 3. The bound in
Definition 3 is given in terms of the total travel time of the message
between the agents. As the agents may move while the message is
in transit, characterising the exact distance between the agents at a
particular time is more subtle. The furthest the agents could be from
each other occurs when they are a fixed distance from each other
at all times between 𝑡01 and 𝑡02 and the receiver move towards the
message being sent at almost the same speed as the message travels.
On the one hand, in practice, in this case, the distance between the
agents would be bound at (𝑡02 − 𝑡

0
1−message processing time) × 𝑐0.

In our model (unlike in practice), this would be (𝑡02 − 𝑡01 ) × 𝑐0, as
the processing of messages is instantaneous. However, it is highly
unrealistic to assume that agents can travel at close to the speed
of light; and in fact, in our model, we do state that agents move

overwhelmingly more slowly than messages. On the one hand, in
practice, if the agents were stationary, or their speed is negligible
compared to the speed of the messages, then the distance between
them would be bound at (𝑡02 − 𝑡

0
1−message processing time) × 𝑐0/2.

In our model (unlike in practice), this would be (𝑡02 − 𝑡
0
1 ) × 𝑐0/2, as

the processing of messages is instantaneous. We take the view that
the distance implied by Definition 3 is an upper bound on both of
these thresholds.

4 SECURITY ANALYSIS USING PROVERIF
To provide automated tool support for checking our definition of
DB-security we will encode our processes into the language used
by the verification tool ProVerif [3], and automatically verify a
property (namely the one in Definition 4) that we show is equivalent
to Definition 3.

4.1 ProVerif in a nutshell
ProVerif [3] is a well-established automated protocol verifier offering
very good support to detect flaws and prove security. This verifier
takes as input processes written in a syntax close to one introduced
in Section 3 but does not feature location and time. ProVerif can
cover a wide class of cryptographic primitives and various protocols
structures, yielding a very flexible tool that can be used to analyse
various encoding of protocols and security properties. It handles
an unbounded number of sessions and even if termination is not
guaranteed, it works well in practice. For instance, this tool has
been successfully used to analyse two avionic protocols that aim to
secure air-ground communications [4], to perform a comprehensive
analysis of the TLS 1.3 Draft-18 protocol [5], or more recently to
analyse some e-voting protocols [10, 17].

Some recent work has looked at encoding and checking DB pro-
tocols in ProVerif [8, 12] however this work requires the reader to
be honest, does not allow for mobility, and only allows times to
be compared on completion of the DB protocol. Therefore, those
methods in [8, 12] cannot be used to analyse protocols such as those
described in Section 2.

4.2 Main result
We consider a subset Σspe0 of special constants in Σ0 that will be
used to abstract time. We explain how to transform a configuration
K = (P;Φ; 𝑡) into a simple configuration that does not contain time.
For sake of simplicity, we assume that variables occurring in P are
at most bound once. The transformation · applied on K gives us a
pair (P0;𝜙0) where:

• P0 is the untimed counterpart of P, i.e. each gettime(𝑥) in-
struction occurring in P is replaced by timestamp(𝑐𝑥 ) where
𝑐𝑥 ∈ Σ

spe
0 , and the occurrences of 𝑥 in the remaining process

are replaced by 𝑐𝑥 ;

• 𝜙0 = {w −→ 𝑢 | (w 𝑐,𝑡−−→ 𝑢) ∈ Φ}.

We denote
(𝑎,act)

the relaxed semantics that corresponds to the
semantics used in a tool like ProVerif (see Figure 3). The TIM rule
does not exist anymore. The rules NEW, OUT, LET-THEN and
LET-ELSE are adapted in a straightforward way, i.e. by removing
the timing information 𝑡 . The rules CLAIM, and CHECK will corre-
spond to “events” in ProVerif. Finally the rule GTIM is modified to



NEW′ ( ⌊new 𝑛.𝑃⌋ 𝑎 ⊎ P;Φ) 𝑎,𝜏 ( ⌊𝑃{𝑛 ↦→ 𝑛′}⌋ 𝑎 ⊎ P;Φ) with 𝑛′ ∈ N fresh
.
.
.

.

.

.

CHECK′ ( ⌊check(𝑢1, 𝑢2, 𝑢3) .𝑃⌋ 𝑎 ⊎ P;Φ)
𝑎,check(𝑢1,𝑢2,𝑢3) ( ⌊𝑃⌋ 𝑎 ⊎ P;Φ)

GTIM′ ( ⌊timestamp(𝑐𝑥 ) .𝑃⌋ 𝑎 ⊎ P;Φ)
𝑎,timestamp(𝑐𝑥 ) ( ⌊𝑃⌋ 𝑎 ⊎ P;Φ)

IN′ ( ⌊in(𝑥).𝑃⌋ 𝑎 ⊎ P;Φ)
𝑎,in(𝑢)

( ⌊𝑃{𝑥 ↦→ 𝑢}⌋ 𝑎 ⊎ P;Φ) with 𝑅Φ↓ =E 𝑢 for some recipe 𝑅

Figure 3: Semantics a la ProVerif.

become a simple event instruction, whereas the IN rule is much more
simple since the travel time of messages is not taken into account
anymore.

The equivalent of our DB-Secure property is then:

Definition 4. A protocol P is causality-based secure w.r.t. a set S
of valid initial configurations, if for all K0 ∈ S, for all execution
exec such that:

K0
(𝑎1,act1) ...(𝑎𝑛,act𝑛) ·(𝑏0,claim(𝑏1,𝑏2,𝑐1,𝑐2)) (P ′;𝜙 ′)

we have that either 𝑏1 ∈ M, or 𝑏2 ∈ M, or there exist 𝑖, 𝑗, 𝑘, 𝑘 ′ ≤ 𝑛
with 𝑖 ≤ 𝑘 ′ ≤ 𝑗 , and 𝑢 ∈ T (Σ𝑐 ,N ∪ Σ+0 ) such that:

• act𝑘 = check(𝑐1, 𝑐2, 𝑢);
• (𝑎𝑖 , act𝑖 ) = (𝑏1, timestamp(𝑐1));
• (𝑎 𝑗 , act𝑗 ) = (𝑏1, timestamp(𝑐2)); and
• 𝑎𝑘′ = 𝑏2.

This definition states that for every claim that 𝑏2 is in the vicinity
of 𝑏1 between times 𝑐1 and 𝑐2, a timing constraint must have been
checked and 𝑏2 must have been active in between the two events.

Before stating our main result, we have to introduce an hypothesis;
since, causality-based requires the existence of timestamp events,
we have to ensure that those events will be available.

Definition 5. A protocol P is well-timed w.r.t. a set S of valid initial
configurations if for all K0 ∈ S, for all execution exec such that:

K0
(𝑎1,act1) ...(𝑎𝑛,act𝑛) ·(𝑏0,claim(𝑏1,𝑏2,𝑐1,𝑐2)) (P ′;𝜙 ′)

we have that there exist 𝑖, 𝑗 ≤ 𝑛 such that:

• (𝑎𝑖 , act𝑖 ) = (𝑏1, timestamp(𝑐1));
• (𝑎 𝑗 , act𝑗 ) = (𝑏1, timestamp(𝑐2)).

We are now able to state our main result that establishes the
equivalence between the two notions DB-security and causality-
based security. Causality-based security does not rely on time and
location anymore and can therefore be analysed relying on ProVerif.

Theorem 1. Let P be a protocol and S be a set of valid initial
configurations. Assuming that P is well-timed w.r.t. S, we have that:

P is DB-secure w.r.t. S
if, and only if,

P is causality-based secure w.r.t. S.

A proof sketch is available in Appendix and a detailed proof
can be found in [6]. First, we may note that if P is causality-based
secure w.r.t. S then P is well-timed w.r.t. S. The first implication is
rather easy to establish. It mainly consists in retiming a witness of an
attack against the causality-based secure property. Re-timing such an
execution depends on the underlying mobility plan, and we consider
the mobility plan where all the agents are located at the same place
(and never move) but the two agents 𝑏1 and 𝑏2 are far away. Since no
action will be performed by 𝑏2 between the two timestamps events,
we know that all the actions are performed by the agents located at
the same place and the time elapsed between these two timestamp
actions can be fixed to be less than the distance between 𝑏1 and 𝑏2.

The other implication is more complex to establish. We start with
an attack trace w.r.t. DB-security with a value 𝑡 𝑗 − 𝑡𝑖 smaller than
some value 𝛿 corresponding to the distance between 𝑏1 and 𝑏2, and
then we consider the following steps:

• We first weaken this timed trace in the untimed semantics;
• Then, we clean up the trace between the two timestamps

actions to ensure that all the actions between these two time-
stamps can not be pushed before or after. Thanks to causality-
based security, we know that an action from 𝑏2 is performed
in between.

• We then lift this trace into the timed model keeping the exact
same value for 𝑡 𝑗 − 𝑡𝑖 , and due to the action performed by
𝑏2, we know that some time has elapsed between the two
timestamps, and thus 𝑡 𝑗 − 𝑡𝑖 is necessary bigger than 𝛿 . We
therefore reach a contradiction.

4.3 Case studies
We consider the two protocols PayBCR and PayCCR respectively
described in Section 2 and Appendix C, and we report the results we
have obtained using ProVerif. All the ProVerif models mentioned in
this section are available in [6].

ProVerif models. We model the protocol PayBCR following the
description given in Section 2. Regarding PayCCR, it is actually not
possible to state the causality-based security property (and even more
the DB-security property). The problem is that, in PayCCR, the
bank never receives the reader/TPM identity or the two timestamps;
so, the data needed to state the final claim claim are not available
to the bank. To overcome this limitation, we propose a slightly
modified version of the protocol named PayCCR++ in which the



TPM identity and the two timestamps are added in the 𝐴𝐶 message5.
More formally, we have that:

𝐴𝐶PayCCR++ = 𝑀𝐴𝐶 (𝐾𝑆 , 𝐴𝑇𝐶,𝑑𝑎𝑡𝑎, 𝜎1,𝑇𝑃𝑀, 𝑡1, 𝑡2)

with 𝐾𝑆 = senc(𝐴𝑇𝐶, shk(𝐶𝑎𝑟𝑑, 𝐵𝑎𝑛𝑘)) as presented in Figure 6.

Scenarios. For each protocol, we have considered a scenario with
an arbitrary number of banks, cards, and TPMs. We do not model the
reader which is assumed to be dishonest and thus fully executable by
the attacker. More precisely, the role of the bank is played by many
possible entities. Each bank issues many cards, and is also used to
certify many TPMs. Among these cards and these TPMs, some are
honest, and some are dishonest meaning that their key material is
revealed to the attacker. However, a given honest entity can not act
as a card and a TPM as the same time. This is not true for a dishonest
participants, and thus to avoid a dishonest participant to act as a card
and a TPM, it is important to differentiate the certificates: given a
bank name 𝑏𝑎𝑛𝑘𝐼𝐷 , a TPM certificate of agent 𝑎, noted 𝑐𝑒𝑟𝑡𝑇 (𝑎), is

sign(⟨TPMCert, 𝑎, pubk(seck(𝑎))⟩, seck(𝑏𝑎𝑛𝑘𝐼𝐷))

whereas a card certificate, 𝑐𝑒𝑟𝑡𝐶 (𝑎) will be

sign(⟨cardCert, 𝑎, pubk(seck(𝑎))⟩, seck(𝑏𝑎𝑛𝑘𝐼𝐷)) .

The initial knowledge given to the attacker is:

• 𝑝𝑢𝑏 (𝑠𝑒𝑐𝑘 (𝑎)) for any agent 𝑎, and his associated certificate
𝑐𝑒𝑟𝑡𝑋 (𝑎);

• seck(𝑎), and shk(𝑎, 𝑏𝑎𝑛𝑘𝐼𝐷) when the agent 𝑎 is dishonest.

Security Properties. Firstly, we consider the causality-based prop-
erty as stated in Definition 4.

In addition, we consider the following extra authentication prop-
erty:
query TPMID:bitstring, cardID:bitstring,

t1:bitstring, t2:bitstring,
event(claim(TPMID, cardID, t1, t2)) ==>

(event(TPM(TPMID)) && event(card(cardID))).

This property expresses the fact that when the bank ends a session
apparently with TPMID and cardID, then TPMID is a TPM identity
whereas cardID is a card identity.

In these protocols the times are checked against a time-bound 𝑡𝑑
that is specific to each card and sent by the card in the SDAD
message. In this context, an attacker may try to replace it by an
excessively large value to make the bank accept the transaction. To
avoid this undesired behaviour, we add at the end of the bank process
a new event receivedBound(𝑐𝑎𝑟𝑑0, 𝑡𝑑 ) and check the following
extra property:
query card_0:bitstring, timeboundinfo:bitstring;
event(receivedBound(card_0, timeboundinfo)) ==>

timeboundinfo = timebound(card_0).

where card_0 is an honest agent.
This property means that for each accepted transaction with an

honest card, the time-bound received by the bank is correct, i.e. it is
the correct time-bound for the card.

5In practice, this is feasible via optional fields inside the 𝐴𝐶 , which issuing-banks
already use for further data-collection.

Verification Results. The protocols have been analysed w.r.t. the
causality-based security property and the authentication property
mentioned above. To make ProVerif conclude, we added additional
data in the check and timestamp events (e.g., the fresh nonce 𝑛𝐶
generate by the card during a session). In addition to highlight the
actions performed by the card (i.e. 𝑏2 in Definition 4) we had a new
event proverAction in the role of the card. One may note that if a
protocol satisfies the resulting query then it is causality-based secure.
Indeed, the more precise the events are the stronger the security
property is.

ProVerif always returns in less than 1s. All the results are pre-
sented in the following table:

Protocol
Role Time-bound Causality-based

authentication authentication security
PayCCR++ ✗ ✓ ✓

PayBCR ✓ ✓ ✓

Results Significance. As expected the two protocols are causality-
based secure, i.e., the physical proximity of the two agents involved
in a transaction is ensured, as soon as they are honest.

Moreover, note that, for such transactions, if time-bound authen-
tication holds, then this inherently implies that the check of time-
stamps occurring in the causality-based property had been correctly
performed.

However, if the PayBCR protocol satisfies role authentication,
PayCCR++ does not. This means that, in PayCCR++, a bank may
accept a rogue transaction, for instance one involving a card acting
as a TPM (or inversely).

This weakness exhibited is however not surprising. Indeed, check-
ing the TPM certificates is part of the role of the card in PayCCR++,
while it is performed by the bank in PayBCR. This means that cer-
tificates may not have been checked if the card’s role is executed by
a malicious agent in PayCCR++, whereas in PayBCR they will be
always correctly checked since the bank is assumed honest.

Properties’ Significance. Lastly, to go further, one can ask them-
selves if the DB-security/causality-based definition is too strong
(since it cannot even be cast to PayCCR), or it is the correct property
to require. Note that the property’s last claim does link the card’s
ID and the TPM’s ID together with specific timestamps, which can
arguably be seen a strong demand for a payment protocol. Instead,
one could –for instance– view that the final claim be made just on
a session ID of the whole protocol execution for which a check
took place. However, we cannot prove the DB-security to causality-
based security reduction for such a weaker claim. In other words,
the causality-based definition we verify (which can be cast on Pay-
CCR++ but not on PayCCR) is also imposed by our theoretical
results. That said, we are pleased to say that not only can we cast this
property and the authentication property on PayBCR, but we see
that they both hold for this protocol. This is a measure of showing
that DB-security (together with the accompanying authentication
property) may indeed be the right security definitions for strong-relay
resistant payments.



5 IMPLEMENTATION
Our formal work above lets us verify the protocol design, however
certain practical questions remain, e.g., is it possible to integrate a
TPM and an EMV reader? Is the clock on the TPM accurate enough
to enforce a reasonable distance bound on the card and reader? To an-
swer these questions, in this section we describe our implementation
of PayBCR, and discuss its experimentally-ascertained functional
correctness, efficiency and security. We also include a discussion of
our own implementation of a PayPass-RRP reader. All of the code
for our implementations is available in [6].

5.1 Implementing a PayPass-RRP and PayBCR
Reader

Why Implement a PayPass-RRP Reader. Despite the fact that
the PayPass-RRP specification has existed since 2016, the Pay-
Pass-RRP protocol is not deployed “in the wild”. However, we
were able to obtain PayPass-RRP test cards, one implemented by
ICC Solutions and one directly given to us by MasterCard. These
cards run JAVA card OS and a proprietary Mastercard applet, de-
signed fully compliant with EMV v4. On the reader side, no public
implementation of the PayPass-RRP reader is available, and there
are no public experiments to say if the protocol will work in practice
on standard hardware. So, we have created our own implementation
of the PayPass-RRP reader.

Why Implement PayBCR. Given the above, we chose to imple-
ment PayBCR rather than PayCCR as the former is arguably of
more interest for real-life deployment, in that –unlike PayCCR–
it does not require change to the widest-spread elements of EMV,
that is the cards. Also, as Section 4.3 concludes, PayBCR has the
advantage of authenticating the TPM to the bank, which PayCCR
does not.

Using TPMs & NFC Readers for PayBCR. Due to the lack of
TPMs on current EMV readers, we use a Vostro Notebook 5471
Base6 with a TPM2.0 v1.38 on board, running Windows 10 and a
standard NFC reader 7. To emulate the banks side of the transaction,
we use a proprietary EMV emulation and test suite, known as “Card-
Cracker”, from EMV manufacturer and consultancy called Consult
Hyperion (https://chyp.com/). We note that this proprietary software
is not necessary to replicate our data, it does however ensure that our
reader implementation can correctly complete a transaction from the
point of view of the back end banking network.

The PayBCR Terminal. The modification that we make to a
PayPass-RRP terminal to lift it to a PayBCR terminal is the fact
that –as part of the ERRD command8– we include TPM2_GetTime
calls to the on-board TPM. In terms of interactions with the TPM,
the two TPM calls are done over one connection to the TPM, unless
the connection has been (incidentally) cut by the latter. As part of
this, we also had to declare new “EMV” fields for the terminal
to store the two signatures generated by the TPM commands, as
well as implement the logic of these be sent to the (CardCracker-
emulated) bank and be verified by the later. We implement two

6CPU: Intel i5-8250U (6MB Cache, up to 3.4GHz), memory: 8GB, DDR4, 2400MHz.
7We used a SCM Microsystems INC SDI011G.
8This is the EMV command that views the round-trip measurements and it is explained
in Appendix D.1.

versions of the terminal an honest version that behaves as expected,
and a ‘’timing-rogue” version that does not perform any checks and
forwards messages to the TPM for time-stamping directly. For these
implementation details, please refer to Appendix D.

We implemented our own EMV relay-attack. We tested it using
an iZettle EMV reader. We ascertained that our implementations
of both PayPass-RRP and PayBCR do stop the relay when the
implementations are those with an honest reader; and, indeed, the
bank would accept a relayed transaction from a “timing-rogue” Pay-
Pass-RRP terminal, but would reject a relayed transaction from a
“timing-rogue’ PayBCR terminal. In Appendix D, we give details
on this implementation, and on our testing of the correct as well as
“under-relay” functionalities.

5.2 Performance Testing: Honest and
Relayed Cases

To show that the protocols discussed here are useful in practice, we
will need to show that time bounds exist that will protect the card
against relaying. I.e., we need to show that the time variance of the
transaction must be small when compared to the time added by a
practical relay.

To get the needed time data from our implementation, we used
CardCracker to time software steps and an external “APDU-spying”
tool – National Instruments (Micropross) ACL1 – to measure the
times of messages in transit. This allows us to time each step of the
transactions. The timing of the distance bounding ERRD command
for both PayBCR and PayPass-RRP is shown in Table 1. The card
processing times and transmission times are the same for PayBCR
and PayPass-RRP, the difference comes in the reader processing
step which takes longer, and has a higher standard deviation in the
PayBCR protocol due to the calls to the TPM.

We note that for these tests, we only considered single attempt of
the protocol, aborting failed runs. Therefore, care would have to be
taken when generalising our results to implementations that would
automatically try to resend messages following a failed exchange9.

Transaction Mean Standard Deviation
Card Processing Time 13,399 1,850
Card-to-reader
Transmitting Time

1,548 418

Reader Processing
Time PayPass-RRP 8,238 938

Reader Processing
Time PayBCR 24,615 3,815

Reader-to-card
Transmitting Time

1,217 205

Total PayPass-RRP 24,402 2,121
Total PayBCR 40,779 4,265

Table 1: Durations of ERRD Commands/Responses for our Pay-
Pass-RRP and PayBCR Implementations (in microseconds)

9As Appendix D explains, we implemented PayPass-RRP and PayBCR as per the
EMV standard for PayPass-RRPand the ERRD will be repeated twice if it fails to get
the correct time-bound, under the first attempt.

https://chyp.com/


Figure 4: The possible false negative and false positive rates for
our implementation of RRP and PayBCR for a range of possible
relay speeds

Discussion. We consider these protocols to be practical if it is
possible to find a time bound that will allow honest transactions to
go through while still stopping relayed transactions. We make the
assumption that a time bound will be set to make false positives (i.e.,
rejected but honest transactions) and false negatives (i.e, accepted yet
relayed transactions) equally likely, i.e., the time bound is half the
relay speed plus the mean transaction time. In Figure 4 we use the
standard deviation from Table 1 to plot the false positive and negative
rates for our implementation of PayPass-RRP and PayBCR for a
range of possible relay speeds.

Both implementations would be easily vulnerable to a relay that
added a total additional delay of 1ms or less, and both would work
well to stop relays that added a delay of more than 10ms. PayPass-
RRP can enforce a much tighter bound than PayBCR, namely in the
5ms to 10ms range. Past work on EMV relay that used standard, off-
the-shelf equipment (smart phones) (e.g. [9, 15]) has reported a delay
of anywhere between 36ms to 100ms. To this end, we can conclude
that both of our PayPass-RRP and PayBCR implementations will
stop relay attacks with such COTS hardware.

Relay attacks that target cars and use specialist equipment can
achieve relay speeds of a few microseconds [14]. It is clear that
neither protocol can defend against such a relay. Indeed, based on
the card processing time variance alone, a relay that adds a 3ms
delay (or less) will lead to a false positive and false negative rate of
more than 2%. Therefore, we can entail that it is not possible for any
design of reader to time bound a MasterCard PayPass-RRP, built
using the same methods as our test card, to protect against specialist
equipment that can relay in microseconds.

Overall, the take-home message of our experiments is that both
PayPass-RRP and PayBCR are capable of stopping relay attacks
based on COTS hardware, such as mobile phones, so are practical
for protecting EMV transactions, especially since the value of a con-
tactless EMV transaction is capped. Additionally, our experiments
add to the work in [7] and show that enhancing an EMV-reader
specification with a TPM as a hardware root of trust (a la PayBCR)

can be a practical option for protecting relays in the presence of
rogue readers.

6 CONCLUSION
Payments and their security have been formally looked at for some
time. However, their newer and rising contactless dimension has been
less investigated and, certainly, less so from a formal perspective.
What is more, whilst the EMV standard has added relay-protection to
contactless payments in 2016, this protection has not been deployed
and, as such, has not been probed in practice. Also, most security and
robustness of EMV payments is formulated under the assumption
that the EMV readers/terminals are honest; in this day and age,
where many of these run on open and updatable firmware, this crux
assumption is at least challengeable and was indeed effortlessly
refuted in 2019, in [7]. The latter work proposed that EMV terminals
be retrofitted with hardware roots of trust (such as TPMs) to aid
enhance aspects of their contactless security (namely, measurements
of time and distance that are used in relay-counteractions). Last
but not least, the said terminals are no longer fixed points-of-sale,
they are mobile iZettle, with the merchants moving them around
even as payments take place. To this end, their contactless range and
measurements fluctuate with such motions.

To sum up, in this work, we addressed the aforementioned gaps
and new developments in contactless-payments security, both from
a formal analysis and from a practical/implementation perspective.
Concretely, we presented a calculus to model relay-resistant proto-
cols, included the most recent ones that offer strong relay-protection
via their integration with hardware roots of trust (HWRoT). In the
same modern and novel vain, our calculus is also the first to allow for
mobility of cards and readers within the proximity-checking primi-
tive used for relay-protection. To be able to formally analyse these
protocols, the physical aspects of time and distance are cumbersome
to deal with in practical, security analysis tools. As such, we also
extended a causality-based characterisation of proximity-checking
security which was initially developed by S. Mauw et al. in 2018,
such that we eliminate the need to account for physicalities in our
(even stronger) protocol models and security analyses. In turn, this
allowed us to verify the proximity-related security of a series of
contactless payments, included the new ones in [7], in the popular
verification tool ProVerif. Last but not least, we provided the first
implementation of Mastercard’s relay-resistant EMV protocol called
PayPass-RRP, as well as of its 2019 extension with HWRoT –
called PayBCR; we evaluated their efficiency and robustness of
these payment protocols to relays attacks, in presence of both ho-
nest and rogue readers. Importantly, our experiments are the first
experiments to show that both PayPass-RRP and PayBCR are
actually practical protocols in offering this type of relay protection
for EMV (for delays in the 5ms to 10ms range, which have deemed
meaningful [9] in this application domain).

In future work, we would like to pursue a series of avenues, part of
which are linked to more faithful modelling of the mobility of agents.
For instance, we are keen to analyse more distance-bounding proto-
cols where the mobility of parties can lead to (in)security concerns,
in ways akin to the area of authenticated ranging.
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A PROOFS OF THEOREM 1
To ease the proofs, we now extend the semantics with annotations.
The annotations will feature labels identifying which process in the
multiset has performed the action (session identifier). This will allow
us to identify which specific agent performed some action. We also
put in the annotation the global time at which the action has been
done. In case of an output, the annotation will indicate the name of
the handle w that has been used to store the output in the frame. In
case of an input, the annotation will indicate by a tuple (𝑏, 𝑡𝑏 , 𝑅) the
name 𝑏 of the agent responsible of the corresponding output, the
time at which this output has been performed, as well as the recipe
𝑅 used to build this output.

Formally, a label is either empty (for the TIM rule) or of the
form (𝑎, 𝑡, 𝛼) with 𝛼 of the form: 𝜏 , gettime, claim(𝑢1, 𝑢2, 𝑢3, 𝑢4),
check(𝑢1, 𝑢2, 𝑢3), out(𝑢), or in(𝑢)}. Thus, an annotated action is:

• empty for the TIM rule;
• (𝑎, 𝛼, 𝑠, 𝑡,w) when the underlying label (𝑎, 𝑡, 𝛼) is of the form
(𝑎, 𝑡, out(𝑢)). In such a case, 𝑠 is the session identifier of the
agent responsible of this action, and w is the handle added in
the frame.

• (𝑎, 𝛼, 𝑠, 𝑡, (𝑏, 𝑡𝑏 , 𝑅)) when the underlying label (𝑎, 𝑡, 𝛼) is of
the form (𝑎, 𝑡, in(𝑢)). In such a case, 𝑠 is the session identifier
of the agent responsible of this action, 𝑏 is the agent respon-
sible of the corresponding output, 𝑡𝑏 the time at which this
output has been done (𝑡𝑏 ≤ 𝑡), and 𝑅 the recipe that has been
used to forge this output.

• (𝑎, 𝛼, 𝑠, 𝑡, ∅) otherwise.

In the untimed semantics, similar annotations can be added. Of
course, in such a case, timing information are not relevant. Annota-
tions are thus of the form (𝑎, 𝛼, 𝑠, 𝑟 ) with either 𝑟 = w (case of the
output), 𝑟 = (𝑏, 𝑅) (case of the input), or 𝑟 = ∅ otherwise.

In order to establish Theorem 1, we prove two propositions: one
for each direction of our main result.

A.1 From DB-security to causality
This section is devoted to the proof of the following proposition.

Proposition 1. Let P be a protocol and S be a set of valid initial
configurations. Assuming that P is well-timed w.r.t. S, and P is
DB-secure, we have that P is causality-based secure.

This proof is quite straightforward and consists in re-timing a
witness of attack against the causally-based secure property. Re-
timing an execution depends on the underlying mobility plan. We
therefore introduce the notion of timed formula CLoc

𝑒𝑥𝑒𝑐 associated to
an annotated relaxed execution 𝑒𝑥𝑒𝑐, and a mobility plan Loc.

Given a trace 𝑡𝑟1 . . . 𝑡𝑟𝑛 we note IN(𝑡𝑟1 . . . 𝑡𝑟𝑛) the set of all the in-
dices corresponding to input actions. Similarly we note TS(𝑡𝑟1 . . . 𝑡𝑟𝑛)
the set of all the indices corresponding to timestamp events. Given a
set 𝑆 we note #𝑆 its size. Finally, we note orig(𝑖) the index of the
ith output in the trace.
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Timed formula associated to an execution. Given an annotated exe-

cution 𝑒𝑥𝑒𝑐 = K0 = (P0;Φ0)
𝑡𝑟1 .....𝑡𝑟𝑛 K𝑛 (with 𝑡𝑟𝑖 = (𝑎𝑖 , 𝛼𝑖 , 𝑠𝑖 , 𝑟𝑖 )

for 1 ≤ 𝑖 ≤ 𝑛) of size 𝑛 and a mobility plan Loc, the timed formula
CLoc
𝑒𝑥𝑒𝑐 , built upon the set of variables Z = {𝑧1, . . . , 𝑧𝑛} ∪ {𝑧𝑏

𝑖
| 𝑖 ∈

IN(𝑡𝑟1, . . . , 𝑡𝑟𝑛)}, is the conjunction of the following formulas:

• 0 ≤ 𝑧1 ≤ 𝑧2 ≤ . . . ≤ 𝑧𝑛 ;
• 𝑧𝑖 < 𝑧𝑖+1 for all 𝑖 ∈ TS(𝑡𝑟1, . . . , 𝑡𝑟𝑛−1);
• for all 𝑖 ∈ IN(𝑡𝑟1, . . . , 𝑡𝑟𝑛),

𝑧𝑖 ≥ 𝑧𝑏𝑖 + Dist (Loc(𝑎𝑖 , 𝑧𝑖 ), Loc(𝑏𝑖 , 𝑧𝑏𝑖 ));

• for all 𝑖 ∈ IN(𝑡𝑟1, . . . , 𝑡𝑟𝑛), for all 𝑗 such that w𝑗 ∈ vars(𝑅𝑖 )∖
dom(Φ0),

𝑧𝑏𝑖 ≥ 𝑧orig( 𝑗) + Dist (Loc(𝑏𝑖 , 𝑧𝑏𝑖 ), Loc(𝑎orig( 𝑗) , 𝑧orig( 𝑗) )).

We note that given a configuration K, the transformation · de-
fined in Section 4.2 is uniquely defined as soon as each variable is
bound at most once in K. In such a case, 𝜌 : 𝑥 ↦→ 𝑐𝑥 is a bijective
renaming.

Lemma 1. Let P be a protocol and K0 = (P0;Φ0; 0) be a valid
initial configuration. Let Loc be a mobility plan.

For any execution exec = K0
𝑡𝑟1 ...𝑡𝑟𝑛 K𝑛 with 𝑡𝑟𝑖 = (𝑎𝑖 , 𝛼𝑖 , 𝑠𝑖 , 𝑟𝑖 )

and function 𝜑 satisfying CLoc
exec we have:

K0
𝑡𝑟 ′1 ...𝑡𝑟

′
𝑛−−−−−−−→Loc K ′

𝑛

with:

𝑡𝑟 ′𝑖 =

{
(𝑎𝑖 , gettime, 𝑠𝑖 , 𝜑 (𝑧𝑖 ), ∅) if 𝛼𝑖 = timestamp(𝑐𝑖 )
(𝑎𝑖 , 𝛼𝑖𝜑𝑐 , 𝑠𝑖 , 𝜑 (𝑧𝑖 ), 𝑟𝑖𝜑𝑐 ) otherwise

and𝜑𝑐 (𝑐𝑖 ) = 𝜑 (𝑧𝑖 ) for all 𝑖 ∈ TS(𝑡𝑟1 . . . 𝑡𝑟𝑛). Moreover, K ′
𝑛𝜑𝑐 = K𝑛 .

PROOF. The proof follows the definition of CLoc
exec . Indeed this

formula contains all the timing constraints to trigger each action.
Moreover, by definition of CLoc

exec we obtain that 𝜑𝑐 is a bijective
function. This preserves equalities and inequalities between the
untimed and the timed execution.

□

We are now able to prove Proposition 1.

PROOF. We assume that P is not causality-based secure, we
establish that P is not DB-secure. Since P is not causality-based
secure, we know that there exist a valid initial configuration K0 =

(P0;Φ0; 0) and an annotated execution 𝑒𝑥𝑒𝑐 such that:

exec = K0
𝑡𝑟1 ...𝑡𝑟𝑛 .(𝑏0,claim(𝑏1,𝑏2,𝑐01,𝑐02),𝑠,∅) (P ′;𝜙 ′)

with 𝑡𝑟𝑖 = (𝑎𝑖 , 𝛼𝑖 , 𝑠𝑖 , 𝑟𝑖 ) (1 ≤ 𝑖 ≤ 𝑛) and 𝑏1 ∉ M, 𝑏2 ∉ M and either:

(1) there is no 𝑘 ≤ 𝑛 such that 𝛼𝑘 = check(𝑐01, 𝑐
0
2, 𝑢) for some

𝑢 ∈ T (Σ𝑐 ,N ∪ Σ+0 ); or
(2) there is no 𝑖 ≤ 𝑛 (resp. 𝑗 ≤ 𝑛) such that

(𝑎𝑖 , 𝛼𝑖 ) = (𝑏1, timestamp(𝑐01))
(resp. (𝑎 𝑗 , 𝛼 𝑗 ) = (𝑏1, timestamp(𝑐02))); or

(3) there exist 𝑖0, 𝑗0, 𝑘0 ≤ 𝑛 and 𝑢 ∈ T (Σ𝑐 ,N ∪ Σ+0 ) such that
𝛼𝑘0 = check(𝑐01, 𝑐

0
2, 𝑢), (𝑎𝑖0 , 𝛼𝑖0 ) = (𝑏1, timestamp(𝑐01)), and

(𝑎 𝑗0 , 𝛼 𝑗0 ) = (𝑏1, timestamp(𝑐02)) but there is no 𝑖0 ≤ 𝑘 ′ ≤ 𝑗0
such that 𝑎𝑘′ = 𝑏2.

Let 𝑡𝑟𝑛+1 = (𝑏0, claim(𝑏1, 𝑏2, 𝑐01, 𝑐
0
2), 𝑠, 𝑡, 𝑟 )). We consider each

case separately.
Case 1: Let Loc be the mobility plan such that Loc(𝑎, 𝑡) = (0, 0, 0)
for any 𝑎 ∈ A and 𝑡 ∈ R+. Since the location of each agent does not
depend on time, for sake of readability, we write Loc(𝑎) instead of
Loc(𝑎, 𝑡).

Let 𝜑 be the function such that:
• 𝜑 (𝑧𝑖 ) = #TS(𝑡𝑟1 . . . 𝑡𝑟𝑖−1) for 𝑖 ∈ {1, . . . , 𝑛 + 1},
• for all 𝑖 ∈ IN(𝑡𝑟1 . . . 𝑡𝑟𝑛), we have that:

– 𝜑 (𝑧𝑏
𝑖
) = 𝜑 (𝑧orig ( 𝑗)) if 𝑏𝑖 ∉ M and 𝑅𝑖 = w𝑗 ,

– 𝜑 (𝑧𝑏
𝑖
) = 𝜑 (𝑧𝑖 ) otherwise.

We can show that this function 𝜑 satisfies CLoc
exec . Indeed, we have

that:
• 0 ≤ 𝜑 (𝑧1) ≤ 𝜑 (𝑧2) ≤ . . . ≤ 𝜑 (𝑧𝑛);
• 𝜑 (𝑧𝑖 ) < 𝜑 (𝑧𝑖+1) for 𝑖 ∈ TS(tr1, . . . , 𝑡𝑟𝑛−1);
• for all 𝑖 ∈ IN(𝑡𝑟1, . . . , 𝑡𝑟𝑛), we have that either 𝜑 (𝑧𝑏

𝑖
) =

𝜑 (𝑧orig ( 𝑗)) ≤ 𝜑 (𝑧𝑖 ) for some 𝑗 such that orig( 𝑗) ≤ 𝑖, or
𝜑 (𝑧𝑏

𝑖
) = 𝜑 (𝑧𝑖 ). In both cases, we have that:

𝜑 (𝑧𝑖 ) ≥ 𝜑 (𝑧𝑏𝑖 ) + Dist (Loc(𝑎𝑖 ), Loc(𝑏𝑖 ))
since Dist (Loc(𝑎𝑖 ), Loc(𝑏𝑖 )) = 0. Remember that all the
agents are at the same location.

• for all 𝑖 ∈ IN(𝑡𝑟1, . . . , 𝑡𝑟𝑛), for all 𝑗 such that w𝑗 ∈ vars(𝑅𝑖 )∖
dom(Φ0), we have that orig( 𝑗) < 𝑖, and thus 𝜑 (𝑧orig( 𝑗) ) ≤
𝜑 (𝑧𝑖 ). Therefore, we have that:

𝜑 (𝑧𝑏𝑖 ) ≥ 𝜑 (𝑧orig( 𝑗) )
and we conclude since Dist (Loc(𝑏𝑖 ), Loc(𝑎orig( 𝑗) )) = 0.
Remember that all the agents are at the same location.

Finally, applying Lemma 1 we obtain that the execution can be
lifted into the timed semantics. This timed execution immediately fal-
sifies the DB-secure property because there is no check event in the
timed execution. Indeed the timed execution is equal to the untimed
one up to the times and the bijective function 𝜑𝑐 defined in Lemma 1.

Case 2: since P is well-timed w.r.t. S, this case is not possible.

Case 3: Let Loc be the mobility plan such that:
• Loc(𝑎, 𝑡) = (0, 0, 0) for any 𝑎 ≠ 𝑏2, and any 𝑡 ∈ R+;
• Loc(𝑏2, 𝑡) = (1, 0, 0) for any 𝑡 ∈ R+.

Since the location of each agent does not depend on time, for sake
of readability, we write Loc(𝑎) instead of Loc(𝑎, 𝑡).

Let 𝜑 be the function such that 𝜑 (𝑧𝑖 ) is as follows:
• 2 · #IN(𝑡𝑟1 . . . 𝑡𝑟𝑖 ) + #TS(𝑡𝑟1 . . . 𝑡𝑟𝑖−1) for 𝑖 < 𝑖0;
• 𝜑 (𝑧𝑖0−1) + 1 + 1

c0 ·𝑛 #TS(𝑡𝑟𝑖0 . . . 𝑡𝑟𝑖−1) for 𝑖0 ≤ 𝑖 ≤ 𝑗0;
• 𝜑 (𝑧 𝑗0 )+2 ·#IN(𝑡𝑟 𝑗0+1 . . . 𝑡𝑟𝑖 )+#TS(𝑡𝑟 𝑗0+1 . . . 𝑡𝑟𝑖−1) for 1 > 𝑗0.

Informally, for all action outside the critical phase delimited by
indices 𝑖0 and 𝑗0, we apply a delay of 2 before each input, and a
delay of 1 after each timestamp. During the critical phase we do not
apply delay before inputs and only apply a short delay of 1/(c0 · 𝑛)



after each timestamp to ensure that time increases between two
timestamps as required by the semantics.

In addition, for all 𝑖 ∈ IN(𝑡𝑟1 . . . 𝑡𝑟𝑛), if 𝑏𝑖 ∉ M then

𝜑 (𝑧𝑏
𝑖
) = 𝜑 (𝑧orig( 𝑗) ) where 𝑅𝑖 = w𝑗 , otherwise:

𝜑 (𝑧𝑏𝑖 ) =
{
𝜑 (𝑧𝑖 ) − 1 if 𝑖 < 𝑖0 or 𝑖 > 𝑗0
𝜑 (𝑧𝑖 ) if 𝑖0 ≤ 𝑖 ≤ 𝑗0 .

We can show that this function 𝜑 satisfies CLoc
exec . Indeed, we have

that:
• 0 ≤ 𝜑 (𝑧1) ≤ 𝜑 (𝑧2) ≤ . . . ≤ 𝜑 (𝑧𝑛);
• 𝜑 (𝑧𝑖 ) < 𝜑 (𝑧𝑖+1) for 𝑖 ∈ TS(tr1, . . . , 𝑡𝑟𝑛−1);
• Regarding the remaining constraints in CLoc

exec , we consider
𝑖 ∈ IN(𝑡𝑟1, . . . , 𝑡𝑟𝑛), and we show the result by distinguishing
two sub-cases: Case 𝑖 < 𝑖0 or 𝑗0 < 𝑖, and Case 𝑖0 ≤ 𝑖 ≤ 𝑗0.

Once this is done, we can apply Lemma 1 to re-time the execution.
We obtain that:

K0
𝑡𝑟 ′1 ...𝑡𝑟

′
𝑛 .(𝑏0,claim(𝑏1,𝑏2,𝑐01𝜑𝑐 ,𝑐02,𝜑𝑐 ),𝑠,∅)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Loc K ′

𝑛+1

with:

𝑡𝑟 ′𝑖 =

{
(𝑎𝑖 , gettime, 𝑠𝑖 , 𝜑 (𝑧𝑖 ), ∅) if 𝛼𝑖 = timestamp(𝑐𝑖 )
(𝑎𝑖 , 𝛼𝑖𝜑𝑐 , 𝑠𝑖 , 𝜑 (𝑧𝑖 ), 𝑟𝑖𝜑𝑐 ) otherwise

and 𝜑𝑐 (𝑐𝑖 ) = 𝜑 (𝑧𝑖 ) for all 𝑖 ∈ TS(𝑡𝑟1 . . . 𝑡𝑟𝑛).
By construction, we have that 𝜑𝑐 (𝑐01) = 𝜑 (𝑧𝑖0 ), 𝜑𝑐 (𝑐

0
2) = 𝜑 (𝑧 𝑗0 ),

and, by definition of 𝜑 , we have that 𝜑 (𝑧𝑖+1) − 𝜑 (𝑧𝑖 ) ≤ 1/(c0 · 𝑛)
when 𝑖 ∈ {𝑖0, . . . , 𝑗0 − 1}. Therefore, we have that:

𝜑 (𝑧 𝑗0 ) − 𝜑 (𝑧𝑖0 ) ≤ ( 𝑗0 − 𝑖0 + 1)/(c0 · 𝑛) ≤ 1/c0
< 2/c0
≤ 2 × Dist (Loc(𝑏1), Loc(𝑏2))

Hence, we have that P is not DB-secure. □

A.2 From causality to DB-security
This section is devoted to the proof of the following proposition.

Proposition 2. Let P be protocol and S a set of valid initial config-
urations. If P is causality-based secure w.r.t. S then P is DB-secure
w.r.t. S.

This implication is more complex than the previous one, and we
start by establishing some lemmas allowing one to reorder some
actions in a trace, and to derive timing constraints between dependent
actions.

A.2.1 Preliminaries. First, we introduce the notion of dependence
between actions.

Definition 6. Given an execution K0
𝐿1−−→Loc · · · 𝐿𝑛−−→Loc K𝑛 with

𝐿𝑖 = (𝑎𝑖 , 𝛼𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑟𝑖 ), 𝐿𝑗 = (𝑎 𝑗 , 𝛼 𝑗 , 𝑠 𝑗 , 𝑡𝑖 , 𝑟 𝑗 ), we say that 𝐿𝑗 is depen-
dent of 𝐿𝑖 , denoted 𝐿𝑗 ↩→ 𝐿𝑖 , if 𝑖 < 𝑗 , and:

• either 𝑠𝑖 = 𝑠 𝑗 (and thus 𝑎𝑖 = 𝑎 𝑗 ), and in that case 𝐿𝑗 is
sequentially-dependent of 𝐿𝑖 , denoted 𝐿𝑗 ↩→𝑠 𝐿𝑖 ;

• or 𝛼𝑖 = out(𝑣), 𝛼 𝑗 = in(𝑢), and 𝑟𝑖 ∈ vars(𝑅 𝑗 ) with 𝑟 𝑗 =

(𝑏 𝑗 , 𝑡𝑏𝑗 , 𝑅 𝑗 ), and in that case 𝐿𝑗 is data-dependent of 𝐿𝑖 , de-
noted 𝐿𝑗 ↩→𝑑 𝐿𝑖 .

We note ↩→∗ the transitive closure of ↩→. Finally we note 𝐿𝑗 ̸↩→∗ 𝐿𝑖
when 𝐿𝑗 is not dependent of 𝐿𝑖 .

As established in [12] in a slightly different setting, we have the
following result.

Lemma 2. Given an execution K0
𝐿1 K 𝐿2 K2 such that 𝐿2 ̸↩→

𝐿1. We have that K0
𝐿2 K ′ 𝐿1

𝐾2 for some K ′.

PROOF. Let K0 = (P0;Φ0), K = (P;Φ), and K2 = (P2;Φ2) be

such that K0
𝐿1 K 𝐿2 K2 with 𝐿2 ̸↩→ 𝐿1. Let 𝐿1 = (𝑎1, 𝛼1, 𝑠1, 𝑟1)

and 𝐿2 = (𝑎2, 𝛼2, 𝑠2, 𝑟2). Since 𝐿2 ̸↩→ 𝐿1 we have that 𝑠1 ≠ 𝑠2.
Therefore, we have that:

• P0 = ⌊act1 .𝑃1⌋ 𝑎1 ∪ ⌊act2 .𝑃2⌋ 𝑎2 ⊎ Q,
• P = ⌊𝑃 ′1⌋ 𝑎1 ∪ ⌊act2 .𝑃2⌋ act2 ⊎ Q,
• P2 = ⌊𝑃 ′1⌋ 𝑎1 ∪ ⌊𝑃 ′2⌋ 𝑎2 ⊎ Q

where act1 and act2 are actions of the form in(𝑥), gettime(𝑥),
let 𝑥 = 𝑣 in 𝑃 else 𝑄 , claim(𝑢1, 𝑢2, 𝑢3, 𝑢4), new 𝑛, out(𝑢), or
check(𝑢1, 𝑢2, 𝑢3).

In case 𝛼1 = out(𝑣) and 𝛼2 = in(𝑢), we have that Φ2 = Φ = Φ0 ⊎
{w 𝑎1−−→ 𝑣} and since 𝐿2 ̸↩→𝑑 𝐿1, we know that w ∉ vars(𝑟2). Thus,
we have that vars(𝑟2) ⊆ dom(Φ0). Now, let K ′ = ( ⌊act1 .𝑃1⌋ 𝑎1 ⊎
⌊𝑃 ′2⌋ 𝑎2 ⊎ Q;Φ0). Relying on the fact that w ∉ vars(𝑟2) in case

𝛼1 = out(𝑣) and 𝛼2 = in(𝑢), it is easy to see that K0
𝐿2 K ′ 𝐿1 K2.

The other cases can be treated in a rather similar way. □

Corollary 1. Given a trace K0
𝑡𝑟1 ...𝑡𝑟𝑛 K𝑛 with 𝑛 ≥ 2 there exists

a bijection 𝜑 : {1, . . . , 𝑛} → {1, . . . , 𝑛} such that:
• 𝑡𝑟𝑖 = 𝑡𝑟 ′𝜑 (𝑖) for all 𝑖 ∈ {1, . . . , 𝑛};
• for all 𝑗 such that 𝜑 (1) < 𝑗 < 𝜑 (𝑛), we have that 𝑡𝑟 ′

𝜑 (𝑛) ↩→
∗

𝑡𝑟 ′
𝑗
↩→∗ 𝑡𝑟 ′

𝜑 (1) ;
• for all 𝑗1, 𝑗2 such that 𝜑 (1) ≤ 𝑗1 < 𝑗2 ≤ 𝜑 (𝑛), we have that
𝜑−1 ( 𝑗1) < 𝜑−1 ( 𝑗2); and

• K0
𝑡𝑟 ′1 ...𝑡𝑟

′
𝑛 K𝑛 .

PROOF. (sketch) We split the proof in two parts: first we prove
that there exists a bijection 𝜑1 cleaning the trace between 𝑡𝑟1 and 𝑡𝑟𝑛
moving actions independent from 𝑡𝑟1 before it. Then we prove that
there exists a bijection 𝜑2 cleaning the trace moving actions from
which 𝑡𝑟𝑛 does not depend on after it. Considering 𝜑 = 𝜑2 ◦ 𝜑1 we
will be able to conclude. □

The next lemma consists in transforming a timed execution into
an untimed one. Even if this transformation can be done in a rather
straightforward way, we state it with some details in order to main-
tain s strong relationship between the two executions.

To do so, we first precise the transformation · presented in Sec-
tion 4.2. When we apply this transformation, we rely on the function
𝜎spe : X → Σ

spe
0 which is used to replace an action of the form

gettime(𝑥) by the action timestamp(𝜎spe (𝑥)).
Similarly, given an execution exec = K0

𝑡𝑟−−→Loc K0, we denote
𝜎time : X → R+ the function that associates to each variable oc-
curring in a gettime instruction, the current time at which this
instruction has been executed.



Lemma 3. Let P be a protocol and K0 be a valid initial configura-
tion for P. For any execution

exec = K0
𝑡𝑟1 ...𝑡𝑟𝑛−−−−−−−→Loc K𝑛

such that 𝑡𝑟𝑖 = (𝑎𝑖 , 𝛼𝑖 , 𝑠𝑖 , 𝑡𝑖 .𝑟𝑖 ) for 𝑖 ∈ {1, . . . , 𝑛}, we have that

K0
𝑡𝑟 ′1 ...𝑡𝑟

′
𝑛 K ′

𝑛 where K ′
𝑛 = K𝑛𝜎 and for any 𝑖 ∈ {1, . . . , 𝑛}, we

have that:

𝑡𝑟 ′𝑖 =


(𝑎𝑖 , timestamp(𝑡𝑖𝜎), 𝑠𝑖 , ∅) if 𝛼𝑖 = gettime

(𝑎𝑖 , 𝛼𝑖𝜎, 𝑠𝑖 , (𝑏𝑖 , 𝑅𝑖𝜎)) if 𝑟𝑖 = (𝑏𝑖 , 𝑡𝑏𝑖 , 𝑅𝑖 )
(𝑎𝑖 , 𝛼𝑖𝜎, 𝑠𝑖 , 𝑟𝑖𝜎) otherwise

where 𝜎 = 𝜎spe ◦ 𝜎−1time assuming that 𝜎spe is the function used to

transform K0 into K0 and 𝜎time is the one associated to the execution
exec.

PROOF. This proof is immediate because the configurations only
differ from the bijective function 𝜎 (the equalities are thus preserved)
and the rules in the untimed semantics are less restrictive than the
rules in the timed semantics □

The following lemma gives us some constraints about dependent
actions. Indeed given two actions 𝑡𝑟1 and 𝑡𝑟2 such that 𝑡𝑟2 ↩→∗ 𝑡𝑟1
we know that enough time must has elapsed after the execution of 𝑡𝑟1
to be able to trigger 𝑡𝑟2.

Lemma 4. Let Loc be a mobility plan, and exec = K0
𝑡𝑟1 .....𝑡𝑟𝑛−−−−−−−−→Loc

K1 be an execution with 𝑡𝑟𝑖 = (𝑎𝑖 , 𝛼𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑟𝑖 ) for 𝑖 ∈ {1, . . . , 𝑛}. Let
𝑖, 𝑗 ∈ {1, . . . , 𝑛} such that 𝑡𝑟 𝑗 ↩→∗ 𝑡𝑟𝑖 . We have that:

𝑡 𝑗 ≥ 𝑡𝑖 + Dist (Loc(𝑎𝑖 , 𝑡𝑖 ), Loc(𝑎 𝑗 , 𝑡 𝑗 )).

PROOF. By definition of ↩→∗, we know that there exists a se-
quence 𝑛 ≥ 𝑖1 > 𝑖2 > . . . > 𝑖𝑘 ≥ 1 such that:

𝑡𝑟 𝑗 = 𝑡𝑟𝑖1 ↩→ 𝑡𝑟𝑖2 ↩→ . . . ↩→ 𝑡𝑟𝑖𝑘 = 𝑡𝑟𝑖 .

We do the proof by induction on the length of this sequence. If
𝑘 = 1 then 𝑡𝑟𝑖 = 𝑡𝑟 𝑗 and thus 𝑡𝑖 = 𝑡 𝑗 and 𝑎𝑖 = 𝑎 𝑗 . The result trivially
holds. Otherwise, we have that:

𝑡𝑟 𝑗 = 𝑡𝑟𝑖1 ↩→ 𝑡𝑟𝑖2 ↩→ . . . ↩→ 𝑡𝑟𝑖𝑘 = 𝑡𝑟𝑖 .

By induction hypothesis, we have that:

𝑡𝑖2 ≥ 𝑡𝑖 + Dist (Loc(𝑎𝑖 , 𝑡𝑖 ), Loc(𝑎𝑖2 , 𝑡𝑖2 )) .

We distinguish two cases depending on the nature of the depen-
dency 𝑡𝑟 𝑗 ↩→ 𝑡𝑟𝑖2 .

Case 𝑡𝑟 𝑗 ↩→𝑠 𝑡𝑟𝑖2 . In such a case, we have that 𝑎 𝑗 = 𝑎𝑖2 and 𝑗 ≥ 𝑖2.
Moreover, we have that 𝑡 𝑗 ≥ 𝑡𝑖2 , and by definition of a mobility plan
we know that

𝑡 𝑗 − 𝑡𝑖2 ≥ Dist (Loc(𝑎 𝑗 , 𝑡 𝑗 ), Loc(𝑎 𝑗 , 𝑡𝑖2 )) .

Relying on our induction hypothesis, we have that:

𝑡 𝑗 ≥ 𝑡𝑖2 + Dist (Loc(𝑎 𝑗 , 𝑡 𝑗 ), Loc(𝑎 𝑗 , 𝑡𝑖2 ))
≥ 𝑡𝑖 + Dist (Loc(𝑎𝑖 , 𝑡𝑖 ), Loc(𝑎𝑖2 , 𝑡𝑖2 ))

+ Dist (Loc(𝑎 𝑗 , 𝑡 𝑗 ), Loc(𝑎 𝑗 , 𝑡𝑖2 ))
≥ 𝑡𝑖 + Dist (Loc(𝑎𝑖 , 𝑡𝑖 ), Loc(𝑎 𝑗 , 𝑡 𝑗 )) .

Note that the last inequality comes from the fact Dist is a distance,
and thus satisfies the triangle inequality.

Case 𝑡𝑟 𝑗 ↩→𝑑 𝑡𝑟𝑖2 . In such a case, we have that 𝑟 𝑗 = (𝑏, 𝑡𝑏 , 𝑅), 𝑟𝑖2 =
w and w ∈ vars(𝑅). By definition of the IN rule we have that:

• 𝑡 𝑗 ≥ 𝑡𝑏 + Dist (Loc(𝑎 𝑗 , 𝑡 𝑗 ), Loc(𝑏, 𝑡𝑏 )), and
• 𝑡𝑏 ≥ 𝑡𝑖2 + Dist (Loc(𝑏, 𝑡𝑏 ), Loc(𝑎𝑖2 , 𝑡𝑖2 )).

Combining these two inequalities together with the triangle inequal-
ity we obtain:

𝑡 𝑗 ≥ 𝑡𝑖2 + Dist (Loc(𝑎 𝑗 , 𝑡 𝑗 ), Loc(𝑎𝑖2 , 𝑡𝑖2 )).

Finally, relying on our induction hypothesis, we have that:

𝑡 𝑗 ≥ 𝑡𝑖 + Dist (Loc(𝑎𝑖 , 𝑡𝑖 ), Loc(𝑎𝑖2 , 𝑡𝑖2 ))
+ Dist (Loc(𝑎 𝑗 , 𝑡 𝑗 ), Loc(𝑎𝑖2 , 𝑡𝑖2 ))

≥ 𝑡𝑖 + Dist (Loc(𝑎 𝑗 , 𝑡 𝑗 ), Loc(𝑎𝑖 , 𝑡𝑖 )).

This concludes the proof. □

A.2.2 Proposition 2. We are now able to prove Proposition 2.
The proof starts with an attack trace w.r.t. DB-security such that
𝑡02 − 𝑡01 < 𝛿 (for some threshold 𝛿) and then follows the following
steps:

(1) We first apply Lemma 3 to weaken the trace in the untimed
semantics.

(2) Then, we apply Corollary 1 to clean up the trace between the
two timestamp actions.

(3) We apply Lemma 1 to lift this execution in the timed model
keeping the value 𝑡02 − 𝑡

0
1 unchanged.

(4) Assuming that the protocol is causality-based secure, there
is still an action executed by the prover between the two
timestamps. By construction this action depends on the two
timestamps. Applying Lemma 4, we will therefore obtain that
𝑡02 − 𝑡

0
1 ≥ 𝛿 leading to contradiction.

Proposition 2. Let P be protocol and S a set of valid initial config-
urations. If P is causality-based secure w.r.t. S then P is DB-secure
w.r.t. S.

PROOF. (sketch) We assume that P is not DB-secure, and thus
there exist a valid initial configuration K0 ∈ S and an execution
exec such that:

exec = K0
𝑡𝑟1 ...𝑡𝑟𝑛 .(𝑏0,claim(𝑏1,𝑏2,𝑡01 ,𝑡02 ),𝑠,𝑡,∅)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Loc K𝑛+1

with 𝑏1 ∉ M and 𝑏2 ∉ M and either:

(1) there is no index 𝑘 ≤ 𝑛 such that 𝑡𝑟𝑘 = (𝑎𝑘 , check(𝑡01 , 𝑡
0
2 , 𝑡

0
3 ), 𝑠𝑘 , 𝑡𝑘 , ∅);

or
(2) for any 𝑡 with 𝑡01 ≤ 𝑡 ≤ 𝑡02 , we have that:

𝑡02 − 𝑡
0
1 < Dist (Loc(𝑏1, 𝑡01 ), Loc(𝑏2, 𝑡))

+Dist (Loc(𝑏2, 𝑡), Loc(𝑏1, 𝑡02 ))

Below, we note 𝑡𝑟𝑖 = (𝑎𝑖 , 𝛼𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑟𝑖 ) for 𝑖 ∈ {1, . . . , 𝑛}. First, we
apply Lemma 3. Therefore, we have that:

exec′ = K0
𝑡𝑟 ′1 ...𝑡𝑟

′
𝑛 .(𝑏0,claim(𝑏1,𝑏2,𝑡01𝜎,𝑡02𝜎),𝑠,∅) K ′

𝑛+1



where K ′
𝑛+1 = K𝑛+1𝜎 and for any 𝑖 ∈ {1, . . . , 𝑛 + 1}, we have that:

𝑡𝑟 ′𝑖 =


(𝑎𝑖 , timestamp(𝑡𝑖𝜎), 𝑠𝑖 , ∅) if 𝛼𝑖 = gettime

(𝑎𝑖 , 𝛼𝑖𝜎, 𝑠𝑖 , (𝑏𝑖 , 𝑅𝑖𝜎)) if 𝑟𝑖 = (𝑏𝑖 , 𝑡𝑏𝑖 , 𝑅𝑖 )
(𝑎𝑖 , 𝛼𝑖𝜎, 𝑠𝑖 , 𝑟𝑖𝜎) otherwise

where 𝜎 = 𝜎spe ◦ 𝜎−1time assuming that 𝜎spe is the function used to
transform K0 into K0 and 𝜎time is the one associated to the execution
exec.

We assume by contradiction that P is causality-based secure, thus
we know that there exist 𝑖0, 𝑗0, 𝑘, 𝑘 ′ ≤ 𝑛 with 𝑖0 ≤ 𝑘 ′ ≤ 𝑗0, and
𝑢 ∈ T (Σ𝑐 ,N ∪ Σ+0 ) such that:

• 𝛼𝑘𝜎 = check(𝑡01𝜎, 𝑡
0
2𝜎,𝑢𝜎);

• (𝑎𝑖0 , 𝛼𝑖𝜎) = (𝑏1, timestamp(𝑡01𝜎));
• (𝑎 𝑗0 , 𝛼 𝑗𝜎) = (𝑏1, timestamp(𝑡02𝜎)); and
• 𝑎𝑘′ = 𝑏2.

By definition of exec′, we have that 𝑡𝑟𝑘 = (𝑎𝑘 , check(𝑡01 , 𝑡
0
2 , 𝑢), 𝑠𝑘 , 𝑡𝑘 , ∅)

for some time 𝑡𝑘 ∈ R+, and this leads to a contradiction with item 1).
Thus, we can assume from now that the condition stated in item 2)
holds.

Now, we apply Corollary 1 to the sub-execution K ′
𝑖0−1

𝑡𝑟 ′𝑖0 ...𝑡𝑟
′
𝑗0

K ′
𝑗0

of exec′, and we obtain that there exists a bijection 𝜑act :
{𝑖0, . . . , 𝑗0} → {𝑖0, . . . , 𝑗0} such that:

• 𝑡𝑟 ′
𝑖
= 𝑡𝑟 ′′

𝜑act (𝑖) for all 𝑖 ∈ {𝑖0, . . . , 𝑗0};
• for all 𝑗 such that 𝜑act (𝑖0) < 𝑗 < 𝜑act ( 𝑗0), we have that
𝑡𝑟 ′′
𝜑act ( 𝑗0) ↩→

∗ 𝑡𝑟 ′′
𝑗
↩→∗ 𝑡𝑟 ′′

𝜑act (𝑖0) ;
• for all 𝑗1, 𝑗2 such that 𝜑act (𝑖0) ≤ 𝑗1 < 𝑗2 ≤ 𝜑act ( 𝑗0), we have

that 𝜑−1act ( 𝑗1) < 𝜑−1act ( 𝑗2); and

• K ′
𝑖0−1

𝑡𝑟 ′′𝑖0 ...𝑡𝑟
′′
𝑗0 K ′

𝑗0
.

We have thus an execution exec′′ such that:

exec′′ = K0
𝑡𝑟 ′1 ...𝑡𝑟

′
𝑖0−1 K ′

𝑖0−1
𝑡𝑟 ′′𝑖0 ...𝑡𝑟

′′
𝑗0 K ′

𝑗0
𝑡𝑟 ′𝑗0+1 ...𝑡𝑟

′
𝑛 .(𝑏0,claim(𝑏1,𝑏2,𝑡01𝜎,𝑡02𝜎),𝑠,∅)

K ′
𝑛+1 .

For sake of simplicity, for 𝑖 < 𝑖0 and 𝑖 > 𝑗0 we define 𝑡𝑟 ′′
𝑖

= 𝑡𝑟 ′
𝑖
.

For all 𝑖 ∈ {1, . . . , 𝑛} we define 𝑎′′
𝑖

the name of the agent executing
𝑡𝑟 ′′
𝑖

. If 𝑖 ∈ IN(𝑡𝑟 ′′1 . . . 𝑡𝑟
′′
𝑛 ), we also define 𝑅′′

𝑖
(resp. 𝑏 ′′

𝑖
) the recipe

(resp. agent name) occurring in 𝑡𝑟 ′′
𝑖

. We have that 𝑎′′
𝜑act (𝑖) = 𝑎𝑖 ,

𝑅′′
𝜑act (𝑖) = 𝑅𝑖𝜎 and 𝑏 ′′

𝜑act (𝑖) = 𝑏𝑖 .

Then, we aim at re-timing the trace exec′′ without changing the
amount of time that elapses between the two timestamps instructions.
Once this is done, the dependencies

𝑡𝑟 ′′
𝜑act ( 𝑗0) ↩→

∗ 𝑡𝑟 ′′𝑗 ↩→∗ 𝑡𝑟 ′′
𝜑act (𝑖0)

for any 𝑗 such that 𝜑act (𝑖0) < 𝑗 < 𝜑act ( 𝑗0) together with the fact
that there exists such a 𝑗 such that 𝑎 𝑗 = 𝑏2 (since P is assumed to
be causality-based secure) will lead us to a contradiction thanks to
Lemma 4. □

Reader Card

𝐾𝑀 , 𝑃𝑟𝑖𝑣𝐶

𝐶𝑒𝑟𝑡𝑃𝑟𝑖𝑣𝐶𝐴 (𝑃𝑢𝑏𝐵)
𝐶𝑒𝑟𝑡𝑃𝑟𝑖𝑣𝐵 (𝑃𝑢𝑏𝐶, 𝑆𝑆𝐴𝐷)
𝑆𝑆𝐴𝐷 = 𝐻 (𝑃𝐴𝑁, 𝑒𝑥𝐷𝑎𝑡𝑒, . . . )

PubCA

UN ∈𝑅 {0, 1}32 n𝐶 ∈𝑅 {0, 1}32

SELECT 2PAY.SYS.DDF01

AID1,AID2,. . .

SELECT PAYPASS_AID

SELECTED

GPO

AIP,AFL

ERRD (𝑈𝑁 )

timed
ERRD-r(𝑛𝐶 )

READ RECORD

Cert𝑃𝑟𝑖𝑣𝐶𝐴(PubB)

READ RECORD

Cert𝑃𝑟𝑖𝑣𝐵(PubC,SSAD), PAN, CDOL1, . . .

GENERATE AC(UN, amount, currency, . . . )

𝐾𝑆 = Enc𝐾𝑀 (ATC)
AC = MAC𝐾𝑠 (amount,ATC,UN,. . . )
SDAD = Sign𝑃𝑟𝑖𝑣𝐶 (AC,UN,amount,
currency,ATC, . . . )

SDAD(AC), ATC

Figure 5: The PayPass-RRP Protocol

B DETAILS ON EMV PAYPASS-RRP
High-level Description of PayPass-RRP. We include here some

essentials on PayPass-RRP, to help the reader grasp immediately
the main idea of the protocol. In essence, in 2016, when Mastercard
introduced PayPass-RRP(shown in Figure 5 below), they added
a subprotocol/process called the Relay Resistance Protocol (RRP)
to their de-facto contactless-payment protocol called PayPass. A
PayPass transaction is lifted to a PayPass-RRP transaction in the
the following way: a new command, called ERRD (“Exchange Relay
Resistance Data”) is introduced, and it is sent by a PayPass-RRP-
capable reader to a PayPass-RRP-capable card right after the GPO
(GET PROCESSING OPTIONS) command.

As with all EMV protocols, the PayPass-RRP card includes:

(1) a private key 𝑃𝑟𝑖𝑣𝐶 ;
(2) a symmetric key 𝐾𝑀 that it shares with the bank;
(3) a certificate chain𝐶𝑒𝑟𝑡𝑃𝑟𝑖𝑣𝐶𝐴 (𝑃𝑢𝑏𝐶 ) for the card’s public key

𝑃𝑢𝑏𝐶 .

The reader has the public key 𝑃𝑢𝑏𝐶𝐴 of the Certificate Authority, and
so can extract and verify the card’s public key. PayPass-RRP starts
with a setup phase (not shown in Figure 5), in which the reader asks
the card what protocols it supports and selects one to run. The card



TPM Reader Card

𝑡𝑑 , 𝐾𝑀 , 𝑃𝑟𝑖𝑣𝐶 ,𝐶𝑒𝑟𝑡𝐵 (𝑃𝑢𝑏𝐶 )
𝐶𝑒𝑟𝑡 (𝑃𝑢𝑏𝑆𝑖𝑔𝑛𝑇𝑃𝑀 ) ,
𝑁𝐶 ∈𝑅 {0, 1}32

𝑃𝑢𝑏𝐶𝐴
𝑁𝑅 ∈𝑅 {0, 1}32

𝑃𝑟𝑖𝑣𝑆𝑖𝑔𝑛𝑇𝑃𝑀 ,. . .

TPM2_GetTime(𝑁𝑅 )

𝑡1 := TPM-AttestedTime;
𝜎1 = 𝑆𝑖𝑔𝑛𝑇𝑃𝑀 (𝑡1 ,𝑁𝑅 )

𝑡1, 𝜎1 𝜎1

𝑁𝐶TPM2_GetTime(𝑁𝐶 )timed

𝑡2 := TPM-AttestedTime;
𝜎2 = 𝑆𝑖𝑔𝑛𝑇𝑃𝑀 (𝑡2, 𝑁𝐶 )

𝑡2, 𝜎2 𝑡2 ,𝜎2 ,𝑡1 ,𝑁𝑅
𝐶𝑒𝑟𝑡 (𝑃𝑢𝑏𝑆𝑖𝑔𝑛𝑇𝑃𝑀 )

Certs

GEN AC, 𝑑𝑎𝑡𝑎, . . .

Check signatures & values in 𝜎1 & 𝜎2 ,
Check 𝑡2 − 𝑡1 < 𝑡𝑑 and check Certs
𝐾𝑆 = Enc𝐾𝑀 (ATC)
AC=MAC𝐾𝑠 (ATC,data,𝑡𝑟𝑢𝑛𝑐𝑒32 (𝜎1) , )
SDAD= Sign𝑃𝑟𝑖𝑣𝐶 (AC, 𝑁𝑅 , t𝑑 , 𝑁𝐶 ,..)

SDAD, AC

Check SDAD
To Bank: AC,. . .

Figure 6: PayCCR [7]: Mastercard’s PayPass-RRP with
Collusive-Relay Protection & No Changes to the Issuing Bank

and reader then generate single-use random numbers 𝑁𝐶 and UN ,
respectively.

The reader then sends an ERRD command to the card, which
contains the nonce UN . The card immediately replies with its own
nonce 𝑁𝐶 , and the reader times this round trip time. The card also
provides timing information, which tells the reader how long this
exchange should take. The reader compares the time taken with the
timing information on the card. If the time taken was too long, the
reader stops the transaction as a suspected relay attack. Otherwise,
the reader requests that the card generates a “cryptogram” (a.k.a.
AC). The card uses the unique key 𝐾𝑀 , which it shares with the
bank, to encrypt its application transaction counter ATC (which
equals the number of times the card has been used). This encryption
equates to a session-key denoted 𝐾𝑆 . The cryptogram AC is a MAC
keyed with 𝐾𝑆 of data including the ATC, the nonce UN , and the
transaction information. As the reader cannot check the AC, the
card generates the “Signed Dynamic Application Data (SDAD)”: the
card’s signature on a message including UN , amount, currency, ATC,
𝑁𝐶 . The reader checks the SDAD before accepting the payment.

C DETAILS ON PAYCCR
PayCCR from [7] is shown in Figure 6. It modifies the EMV pro-
tocol on the card and the EMV reader’s side, yet the bank system
backend remains unchanged from the current standard. As with Mas-
terCard’s PayPass-RRP protocol, the time bound t𝑑 (cardID) to

be enforced for the proximity-checking phase is embedded in each
card; we denote it 𝑡𝑑 . Before the RRP process, the reader sends the
card a certificate chain for the TPM’s public part of the signing key.

The EMV reader will then send a nonce 𝑁𝑅 to the TPM to be
timestamped. The TPM receives this bitstring 𝑁𝑅 passed to the
𝑇𝑃𝑀2_𝐺𝑒𝑡𝑇𝑖𝑚𝑒 command, the TPM timestamps it with
TPM-AttestedTime, and using a randomised signing algorithm
to produce the signature 𝜎1. Then, the EMV reader forwards 𝜎1 to
the card. The rest follows as per PayBCR only that it is the card
which does the timestamps’ checks and the bank does not receive
the data for this.

D IMPLEMENTATION DETAILS
We implemented the PayPass-RRP and PayBCR terminals/readers’
logic. The implementation is in C#, in order to be (easily) integrated
with the CardCracker tool. We recall that CardCracker is a tool by
the EMV-orientated company called ConsultHyperion. It is devel-
oped in C# and it offers rich smart-card testing suite. It provides
in-built functions, e.g. crypto libraries, EMV functionality, etc, but
also a full scripting language that supports EMV commands. This is
useful in both development and testing of any EMV prototype.

We developed/extended CardCracker, in C#, so that we can ex-
pand it primarily as follows: (a) with the ERRD command ; (b) with
a new ERRD command that included communicating with a TPM
2.0. We also developed the scripting language of CardCracker so
that then we can run easily the tests we describe below. We used
this implementation for all our security/efficiency measurements
described below.

On the one hand, for all PayPass-RRP-inherent matters, our
reader-side implementation are based on the “EMV Contactless
Book C-2” of the EMV specifications [13], which we will henceforth
refer to as EMV-C2. On the other hand, any TPM-related aspects (in
PayBCR), which are added on top of PayPass-RRP, are as per [7].

We implement two types of terminals: (a) the type of readers
that behave as per the specifications; (b) the type of readers that
attempt to cheat on the RTT measurements. We call the former
variety “honest’’ and the latter – “timing rogue”. We detail this
below.

D.1 The PayPass-RRP Terminal
More details on EMV commands and responses we will describe
below can be found in the EMV-C2 specs [13].

Any PayPass-RRP-compliant terminal should implement and
exhibit in testing the following flow w.r.t. EMV commands and
responses:

(1) Their transactions should exhibit EMV messages in a flow/order
as per the EMV-C2 specs, that is: “Select PPSE”, “Select
AID”, “GPO”, “ERRD”, “Read Records”, “GEN AC”.

(2) In the above, the ERRD command should contain the “Termi-
nal Relay Resistance Entropy” (i.e., in our Figure 5 which de-
scribes PayPass-RRP, this is denoted as the reader-generated
𝑈𝑁 nonce; in our Figure 1 which describes PayBCR, this is
denoted 𝜎

′
1);

(3) The ERRD response should contain the following:



• Device Relay Resistance Entropy, i.e., the nonce returned
by the card and denoted on Figure 5 as 𝑁𝐶 , or to be precise
– “ERRD-r(𝑁𝐶 )”)

• three timing estimates from the card:
– Min Time for Processing Relay Resistance APDU, i.e.,

the minimal time the card takes to process this ERRD
command;

– Max Time for Processing Relay Resistance APDU, i.e.,
the maximal time the card takes to process this ERRD
command;

– Device Estimated Transmission Time For Relay Resis-
tance R-APDU, i.e., the RTT-estimate as specified on the
card.

(4) The RRP process10 should be performed as per EMV-C2,
Sections 3.10, 5.3 and 6.6. I.e., this means that every check
passed or failed should be reflected in the bytes of the APDU
as per these specifications.

D.1.1 The Honest PayPass-RRP Terminal. To determine if
the PayPass-RRP terminal is exhibiting the (in)correct functional
behaviour, one should inspect the following APDU responses, inside
gathered EMV logs:

• AIP (Application Interchange Profile) response
• TVR (Terminal Verification Result) response.

Any honest PayPass-RRP terminal must:
(i) Approve a successful transaction having performed PayPass-

RRP when no relay attack occurred.
Concretely, as per EMV-C2, the following should occur:
(a) AIP = 1981 (meaning the card supports PayPass-RRP);
(b) TVR = 0000000002 (meaning PayPass-RRP was per-
formed and passed).

(ii) Detect and abort a transaction having performed PayPass-
RRP if a relay attack occurs.
Concretely, as per EMV-C2, the following should occur:
(a) AIP = 1981 (meaning the card supports PayPass-RRP);
(b) TVR = 000000000E (meaning that PayPass-RRP was
performed but the relay-resistance threshold was exceeded
and the relay-resistance time limits were exceeded).

D.1.2 The Timing-Rogue PayPass-RRP Terminal. The timing-
rogue PayPass-RRP terminal will always report the bit of TVR
linked to PayPass-RRP as per case (𝑖) above. Moreover, in the
error sections/APDUs of EMV, it will report no errors. This conveys
that a rogue PayPass-RRP terminal would detect relay attacks by
performing PayPass-RRP, but approve said transactions anyway.

D.2 The PayBCR Terminal
First, recall that PayBCR is designed such that its terminal looks
identical to the PayPass-RRP terminal as far as the EMV in-
put/outputs are concerned (i.e., the communication with TPM is
internal to the reader and the visible outputs of the reader are as per
PayPass-RRP). So, in the honest case, there should be absolutely
no difference between the two terminals: concretely, they both be-
have like in case (𝑖) above. Second, recall that the difference between

10This is the process of checking the above parameters against the reader’s clock.
We stress that we use “PayPass-RRP” for a protocol and “RRP” for the process
standardised by Mastercard inside this protocol.

PayBCR and PayPass-RRP terminal appears in the “timing-rogue”
case: the terminal’s implementation should be such that it detects and
reports relay attacks. In other words, the “timing-rogue” PayBCR
terminal is in fact not corruptible, and, in case of relays, it behaves
as an honest PayPass-RRP terminal – as per case (𝑖𝑖) above.

The actual modification that we make to a PayPass-RRP ter-
minal to lift it to a PayBCR terminal is the fact that –as part of
the ERRD command– we include TPM2_GetTime calls to the on-
board TPM. In terms of interactions with the TPM, the two TPM
calls are done over one connection to the TPM, unless the connec-
tion has been (incidentally) cut by the latter. As part of this, we also
had to declare new “EMV” fields for the terminal to store the two
signatures generated by the TPM commands, as well as implement
the logic of these be sent to the (CardCracker-emulated) bank and be
verified by the later. This will become clearer when we detail further
on the functional correctness and security of the implementation in
Section D.4.

D.3 A PayPass relay application
We implemented a software-based EMV-relay mechanism tailored
for Mastercard’s PayPass protocol. Our relay “box” is formed
of two Android apps running on two phones: one as a PayPass-
card emulator and one as a PayPass-reader emulator. These are
connected to the same wireless network to a communicate wirelessly
with a “server” which technically implements all the relay logic; this
server is written in Python 3.7.

There are no special optimisations in the relay logic or in the
applications, neither at the NFC-stack level nor at the EMV stack
level: i.e., we just send back and forth plain EMV APDU commands.
This is because this relay “box” is simply a supporting apparatus
for testing the behaviour of our PayBCR and PayPass-RRP im-
plementations. That said, when tested using working, bank-issued
PayPass cards and a working iZettle reader, this relay “box” per-
forms robustly and reasonably fast. Concretely, a relay payment from
a card found at 20m from the reader takes on average 3s (over 100
iterations). And, the iZettle reader accepts these payments without
any intervention/modification onto it. About 2% of relay transactions
fail due to synchronisation-issues between the card and the reader
emulator.

D.4 Functional & Security Testing
In the functional-testing part, we look to see that the terminals
implemented as per above behave as expected: i.e., when no relay
“box” is present and the terminals are honest, the execution logs
should correspond to the descriptions in EMV-C2 and [7]. To do
this, we ran experiments with CardCracker (over 30 PayBCR and
30 PayPass-RRP payments), and the results are evidenced via the
logs11 gathered and discussed below. Due space constraints, we
mainly detail herein for the case of PayBCR (and not the case of
PayPass-RRP).

Figure 7 shows part of the ERRD command as demonstrably exe-
cuted by our honest PayBCR terminal. Lines 89-91 show that we
store if RRP is performed and, for this honest terminal, the logs

11These logs contain some code in CardCracker-proprietary syntax, however in their
overwhelming majority they contain standard-EMV keywords and, as such, they are
largely self-explained to a reader familiar with EMV language.



85/ /! --------------------------------
86/ /! ERRD
87/ /! -------------------------------
88/ /
89/ /[DECLARE RRP_PERFORMED = Y]
90/ /[PRINT RRP_PERFORMED]
91/ /:RRP_PERFORMED = Y

...
95/ /[IN_CLA = 80]
96/ /[IN_INS = EA]
97/ /[IN_P1 = 00]
98/ /[IN_P2 = 00]
99/ /[IN_LC = 04]

100/ /[IN_CDATA = [IN_RRP_TRRE]]
101/ /[IN_CDATA = 11121314]
102/ /[IN_LE = 00]
103/ /! ------------
104/ /![START_TIMER = MICROTICKS()]
105/ /[TMP = START]
106/ /[TPM_CONN = TPM2CONNECT()]
107/ /[TESTEQ [TPM_CONN], TRUE]
107/ /[TESTEQ TRUE, TRUE]
108/ /[DOIFEQ [TMP], START]
108/ 1/ /[DOIFEQ START, START]
108/ 2/ /!CALL TPM GET2TIME([IN_RRP_TRRE]{UN})
108/ 3 /[GETTIME_RESULT = TPM2GETATTESTEDTIME([IN_RRP_TRRE])]
108/ 4 /[GETTIME_RESULT = TPM2GETATTESTEDTIME(11121314)]
108/ 5/ /[TPM_TIMESTAMP_1 = TPM2GET("TIMEINFO","TIME")]
108/ 6/ /[TPM_SIGNATURE_1 = TPM2GET("SIGNATURE","SIG")]
108/ 7/ /[IN_RRP_TRRE = LEFT([TPM_SIGNATURE_1], 04)]
108/ 8/ /[IN_RRP_TRRE = LEFT(405C6808E4153207973FF84A133

430EFA07B298433D2F2A1E9E60F76E8433D7EAC058C4F78C04D967F3D29A19044C59
26093564847EE991364B4D65AA63A489CF9245A48378B138B74483C925A5E48866F8
6D40049DD5C03845F83DD73028FFD2BC0140B53936AE07A5257A97F123EA661781EF
14A9352319C1064A5C052B9A83A00DAA70CD7C6BCC07022B6E39788F337C9A97F4DF
CF40E574F6CA389BB0FDF054BE6DA155A13430C1436FD597AF47BE3CAB280DDB796C
C168EFA5CCC3130F5AF517115522A6A271BAB8CE96CAED270D66A8EE8EAADD
108/ 9/ /[IN_CDATA = 405C6808]
108/ 10/ /[DOIFEND] ...
108/ 11/ /[DOIFEQ [TMP], STOP]
108/ 12/ /[DOIFEQ START, STOP]
108/ 13/ /! DOIF !!CALL TPM GET2TIME(Card Nonce)
108/ 14/ /! DOIF ![IN_RRP_DRRE = MID([OUT], 03, 04)]
108/ 15/ /! DOIF ![GETTIME_RESULT = TPM2GETATTESTEDTIME([IN_RRP_DRRE])]
108/ 16/ /! DOIF ![TPM_TIMESTAMP_2 = TPM2GET("TIMEINFO","TIME")]
108/ 17/ /! DOIF ![TPM_SIGNATURE_2 = TPM2GET("SIGNATURE","SIG")]
108/ 18/ /! DOIF ![TPM_CONN = TPM2CLOSE()]
108/ 19/ /! DOIF ![TESTEQ [TPM_CONN], ]

Figure 7: Snippet of CardCracker Logs – Part1 of ERRD Com-
mand in a Honest PayBCR Terminal

show that it is indeed carried out. Lines 95–102 show standard EMV
APDU headers. In our implementation, IN_RRP_TRRE stands for
a list that stores data linked to the RRP process on the terminal side.
In a similar list, denoted IN_RRP_DRRE, we do this for the card
side as well. Line 106 shows that a connection to the TPM is opened,
and in lines 108/2 and 108/3 – the 𝑈𝑁 nonce from the reader is
gathered inside the IN_RRP_TRRE and passed to the TPM as an ar-
gument to the TPM2_GetTime command. Lines 108/13 show that,
similarly, the nonce from the card is gather inside IN_RRP_DRRE
and passed to the TPM. In variables denoted TPM_TIMESTAMP_1
and TPM_SIGNATURE_1 (respectively . . . _2), we stored the time-
stamps and signatures returned from the TPM2_GetTime com-
mands called to the TPM.

In Figure 8, we partly show that our (honest) PayBCR reader
does also then follow the RRP process as per EMV-C2’s Sections
3.10, 5.3 and 6.6 and partly recalled by us in Subsection D.1.

Line 104 in Figure 7 shows that we are taking timings for perfor-
mance analysis purposes.

The last crucial part of the functional testing is to attest that the
bank checks the timestamps and the signatures by the TPM. In
Figure 9, we show a short snippet of logs: this exhibits that an honest
PayBCR reader –alongside the AC– does send the TPM signatures
(see lines 259–262 in Figure 9). The last lines of logs in Figure 9

9/ /[RRP_TIME_TAKEN = SUB([RRP_TIME_TAKEN],
[TERM_EXPECT_TRANSMIT_TIME_RRP_CAPDU])]

10/ /[RRP_TIME_TAKEN = SUB(14A0, 0012)]
11/ /[RRP_TIME_TAKEN = SUB([RRP_TIME_TAKEN], [RRP_MIN_CALC])]
11/ /[RRP_TIME_TAKEN = SUB(148E, 0018)]
12/ /
13/ /[DOIFGE 0, [RRP_TIME_TAKEN]]
13/ /[DOIFGE 0, 1476]
14/ /! DOIF ![RRP_MAX_CALC = 0]
15/ /[DOIFELSE]
16/ /[RRP_MAX_CALC = [RRP_TIME_TAKEN]]
16/ /[RRP_MAX_CALC = 1476]
17/ /[DOIFEND]
18/ /
19/ /[MEASURED_RRP_PROCESSING_TIME = [RRP_MAX_CALC]]
19/ /[MEASURED_RRP_PROCESSING_TIME = 1476]
20/ /[PRINT MEASURED_RRP_PROCESSING_TIME]
20/ /:MEASURED_RRP_PROCESSING_TIME = 1476
21/ /[AS_BCD = HEXTOBCD([MEASURED_RRP_PROCESSING_TIME])]
21/ /[AS_BCD = HEXTOBCD(1476)]
22/ /[PRINT AS_BCD]
22/ /:AS_BCD = 5238
23/ /
24/ /! C-2 SR1.19
25/ /[RRP_MAX_CALC = SUB([RRP_MIN_GRACE_PERIOD],

[IN_RRP_MIN_TFPRRAPDU])]
25/ /[RRP_MAX_CALC = SUB(0014, 0000)]

Figure 8: Snippet of CardCracker Logs – Part2 of ERRD Com-
mand in a Honest PayBCR Terminal

indicate that the bank does the checks of timings and outputs the
result back.

259/ [PRINT OUT_AC]
259/ :OUT_AC =
260/ [PRINT TPM_TIMESTAMP_1]
260/ :TPM_TIMESTAMP_1 = F56959
261/ [PRINT TPM_TIMESTAMP_2]
261/ :TPM_TIMESTAMP_2 = F57348
262/ [PRINT TPM_SIGNATURE_1]
262/ :TPM_SIGNATURE_1 =
94EF2052B4753010B28419A88E0CF3B3CF2682468D6708EBD7DCC9959F41916
A5ECAD3786557C556FA0918ADDA1012E98F44F4146E96669024064E478E37BF
49F147114D3B9913024B100E2EEF22B059E48812B273608B39C16F0F77D042C
057D7FF68A4C07DE3EE861B71CBAB37FF89483A07C9F789647F230DCD360487
A04FD707C7E3D53459F48C488D8B1E3B5EA0A1F0B3E7FD393BEA989EC01933B
DE44BDF3A36288C6B2F19F3E1CF4D3E1BC3F8FE79AE1C8C6D681ECCE900F7AD
40659F3FEEDE75C4804319B0BF3D5CAC91DA51AFDD3ABCE3A949128EC4789F5
FE8301DE755405C320C7B9663776253ABEBF22D915F8C03F9534991AF2BF9F9
C6212B0D
263/ [PRINT TPM_SIGNATURE_2]
263/ :TPM_SIGNATURE_2 =
A9DF2C92173E30D3EB9562FA05A7CF9EB9DAED9367C7D9719673FD6BCF3CB64
4460ABD6E8A90E7802481A041808DA55475F1E7D2066FF28B632105441B98B2
28B0A377519B026538A3E52C50E54882A0ABFC49D6E13460CABC1F0A07BDC3D
973467F1F6AEFB139E144EB09B5631A5B500210F39B1F1FC1A7CAABC566AEF6
E95EA288A418D517BA8F948A372FF24148E8B138D23828BB92C629EB71D8238
7DC73784161527BEFEF5EF96E95CD0DE1C1A02BD3140D34A1BAA8285D4FCF1A
4EEECF66D76CF421B6FC6AACFE78A4C38CC2D19E812C8F268AF2C6D2A6F50FC
477EB997D855667381263EE10BF1A76EE5C431FC9EC7E996E151F1232B45734
1AAAB2F3
...
25/ [RECALC_RRP_MAX_CALC = [RECALC_TIMETAKEN]]
26/ [RECALC_RRP_MAX_CALC = 632C]
27/ [DOIFEND]
28/
29/ [RECALC_MEASURED_RRP_PROCESSING_TIME = [RECALC_RRP_MAX_CALC]
...
30/ [PRINT RECALC_MEASURED_RRP_PROCESSING_TIME]
...
31/ [AS_BCD = HEXTOBCD([RECALC_MEASURED_RRP_PROCESSING_TIME])]
31/ [AS_BCD = HEXTOBCD(632C)]
32/ [PRINT AS_BCD] 32/ :AS_BCD = 25388

Figure 9: Snippet of CardCracker Logs – Part of the Bank
Rechecking RTTs

In the security-testing cases, we used our relay “box”. These as-
certain that the implemented behaviour complies to the expectations:
(a) the “timing-rogue” terminals implemented would elude the RTT
checks; (b) that in PayPass-RRP this is not caught by the bank and
in PayBCR this is caught by the bank.
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