
Calculating Probabilistic Anonymity from Sampled Data

Konstantinos Chatzikokolakis
Dept. of Computer Science

Technische Universiteit Eindhoven
k.chatzikokolakis@tue.nl

Tom Chothia
School of Computer Science
University of Birmingham
T.Chothia@cs.bham.ac.uk

Apratim Guha
School of Mathematics

University of Birmingham
guhaa@for.mat.bham.ac.uk

Abstract

This paper addresses the problem of calculating the
anonymity of a system statistically from a number of
trial runs. We show that measures of anonymity based
on capacity can be estimated, by showing that the
Blahut-Arimoto algorithm converges for sampled data.
We obtain bounds on the error of the estimated value
by calculating the distribution of mutual information
when one distribution is known and one unknown.
This leads to finding the variance of the estimation
of anonymity in terms of the numbers of samples,
inputs and possible observations, which in turn tells
us what kinds of systems can and cannot be accurately
analysed using a statistical approach. We demonstrate
our method on an implementation of the Dining Cryp-
tographers protocol and on a Mixminion anonymous
remailer node.

1. Introduction

Anonymous communication systems are becoming
increasingly popular and important as Internet users
become aware of the threats to their personal informa-
tion. However, the anonymity offered by these systems
is often poorly understood. This lack of understanding
is especially true when it comes to probabilistic be-
haviour. One system might hide users completely and
another system might just introduce a small amount of
doubt as to the users’ true identity, yet both systems
could be said to offer “anonymity”. Understanding this
distinction can become even more complicated when
the level of anonymity a system provides is affected
by how the system is used.

Information theory provides powerful techniques
to measure the relation between different probability
distributions (see e.g. [11]) and so has proved useful
for defining anonymity ([26], [14], [28], [23], [7]).
Following the work of Moskowitz et al. [23] and

Chatzikokolakis et. al [7], we base our definition of
anonymity on the information theoretic notion of ca-
pacity. This approach has the advantage of accounting
for any previous knowledge the attacker might have
about the system. In particular, we do not need to
assume that the users of a system are all equally likely
to be guilty or that they use the system in a uniform
way, which is unlikely to be the case in any real
system.

Previous work using capacity and mutual informa-
tion to measure anonymity has assumed that the exact
behaviour of the system, that is the probability of each
observation under any user, is known. Typically, one
has to construct a model of the system and use a
model checker to compute the actual probabilities. In
this paper we address the problem of how measures
of anonymity can be calculated from trial runs of the
system alone. There are three main reasons to base our
method on sampled data, rather than say the output of
a formal model.

First, information security systems tend to be com-
plex and many attacks are based on subtle aspects
like time or quality of service, therefore creating an
accurate model may be very difficult. Second, when
we do have a model, as the number of users increases
the internal state space quickly becomes too big to
be handled by model checking tools (a problem even
harder for probabilistic model checking). Third, it is
often the case that an attack exploits implementation
faults and not a problem in the protocol itself; an exam-
ple of such a scenario is discussed in Section 9, where
a flawed implementation of the Dining Cryptographers
protocol is analysed. Clearly, such attacks can be only
discovered by analysing the implementation itself.

The user of our method must define the inputs of the
system, which correspond to the events that we wish
to keep anonymous, and the possible observations an
attacker might make, which corresponds to defining
the appropriate attacker model. The system under test

is then run a number of times until an estimated prob-
ability transition matrix can be built up. We apply the
Blahut-Arimoto algorithm ([1], [5]) to this matrix in
order to estimate the capacity and hence the anonymity
of the system. As the Blahut-Arimoto algorithm finds
the input distribution that maximises the information
leakage we may generate our sample data using a
uniform prior distribution and then let the algorithm
find the worst possible usage.

We prove that our estimate converges to the true
value of capacity. However, this doesn’t answer the
question of how close the result of a single test is to
the true value. We find a lower and upper bound for the
true value of capacity in terms of our estimate, based
on the largest likely error of any entry in the matrix. To
provide a much more accurate lower bound we find the
distribution that our estimate comes from. This turns
out to be a χ2 distribution in the case that the capacity
is zero and a normal distribution if the capacity is non-
zero. In the latter case, the best estimate is the mean of
the distribution plus a small correction. In finding this
result, we solve the more general problem of finding
the distribution of mutual information between two
random variables, when the probability distribution of
the one is known and the other is not. This result also
makes it possible to estimate the mutual information of
a system for uniform usage, or any other given prior.

The variance of the estimate is dominated by the
number of inputs times the number of outputs, divided
by the number of samples. Therefore, a statistical
estimate will be accurate if there are significantly more
samples than the product of the number of inputs
and all observable outputs. The ability to generate
this many samples, in a reasonable amount of time,
acts as a guide to which systems can and cannot be
analysed statistically. Note that this can still be much
more efficient than model-checking. Often, complex
systems have a great number of “internal” states, but
still generate few observations. In this case, generating
samples is easier than constructing the whole state
space of the system. Moreover, even if the number of
observations is too big, we could concentrate on some
of them and still be able to make a partial, yet useful
analysis of the system.

We have implemented a tool to calculate the estimate
of anonymity directly from a list of observations of a
system. This tool calculates the estimated capacity of
a system, tests it for consistency with zero and if the
evidence suggests that it is non-zero then it calculates
bounds on the true value.

We illustrate our method by applying it to an im-
plementation of the Dining Cryptographers protocol,
as well as to a Mixminion mix node. Dining Cryptog-

raphers is often proved correct in order to demonstrate
formal anonymity frameworks. However, as we show
here, an implementation could lose anonymity due
to factors such as scheduling or extra work being
required of the payer. Mixminion is a state-of-the-art
mix network. As a simple example of the application of
our method to such a system we test if anything about
the order in which messages entered the mix can be
deduced from the observation of packets leaving the
mix. We ran our own test node and sent messages
across the Internet to other mix nodes. We used a
packet sniffer to observe all data leaving our node. Our
results are consistent with the Mixminion node having
perfect anonymity with respect to the order in which
single messages arrive and are forwarded.

The contributions of this paper are:
• Showing that anonymity, as defined by capacity,

can be calculated from sampled data, by showing
that the Blahut-Arimoto algorithm converges for
sampled data.

• Proving bounds on the error of the estimate,
which decrease as the sample size increases.

• Finding a bound on the variance of our estimate,
and so establishing what types of systems can
and cannot be meaningfully analysed using a
statistical approach.

• Illustrating our method and providing evidence
that our distribution calculations are correct by
analysing an implementation of the Dining Cryp-
tographers protocol and a Mixminion remailer
node.

The next section discusses background and related
work. We describe how we can calculate an estimate
of anonymity from sampled data in Section 4. We find
bounds on our estimate of anonymity in Section 5 and
we establish the distribution that our estimate is drawn
from in Section 6. In Section 7 we briefly discuss
tool support for our method and we demonstrate this
with an implementation of the Dining Cryptographers
protocol in sections 8 and 9. We show that our method
can be applied to real software in Section 10 by
analysing a Mix node and we conclude and discuss
further work in Section 11. Full proofs are given in
the appendix.

2. Information-theoretic measures of
anonymity

Information theory reasons about the uncertainty of
a random variable and the information we can obtain
for a variable X by observing a variable Y . Let X,Y
be random variables and X ,Y their set of values. The
entropy of X is defined as:

H(X) = −
∑

x∈X p(x) log p(x)

and measures the uncertainty about its outcome. It
takes the minimum value 0 when X is constant (gives
a certain value with probability 1) and the maximum
value log |X | when its distribution is uniform. The
conditional entropy is defined as:

H(X|Y) = −
∑

y∈Y p(y)
∑

x∈X p(x|y) log p(x|y)

and measures the uncertainty about X that “remains”
when we know Y . It takes its minimum value 0 when
Y completely determines the value of X (eg, when
X = Y) and its maximum value H(X) when X,Y
are independent. Then the mutual information between
X,Y , defined as

I(X;Y) = H(X)−H(X|Y)

measures the information that we learn about X if we
observe Y . It is symmetric (I(X;Y) = I(Y ;X)) and
ranges between 0 (when X,Y are independent) and
H(X) (when X,Y are totally dependent). Finally, the
Kullback-Leibler distance between distributions p, q is
defined as

D(p ‖ q) =
∑

x p(x) log p(x)
q(x) .

A channel consists of an input alphabet X , an out-
put alphabet Y and a probability matrix W where
Wx,y = p(y|x) gives the probability of output y
when x is the input. Given a channel and an input
distribution on X , we can define two random variables
X,Y representing the input and output of the channel,
and with a slight abuse of notation we write I(X,W)
for I(X;Y). The capacity of the channel is defined
as the mutual information between the input and the
output, maximised over all input distributions:

C = maxp(x) I(X,W)

Anonymous communication channels are inherently
probabilistic. In such systems, we have a set A of
anonymous events that we wish to keep hidden, for
example the identities of the users or the link between
senders and receivers. Moreover, we have a set O
of observable events which model what the attacker
can observe about the protocol. We assume that on
each execution, exactly one a ∈ A and o ∈ O will
happen and that the output of the protocol is chosen
probabilistically. Then we can define the random vari-
ables A,O representing the anonymous and observable
events, and use the aforementioned notion to measure
the anonymity guarantees of the protocol.

The choice of A,O should be made by the user
of our method. A is determined by the anonymity
requirements of the protocol, since it contains the

events that the protocol aims at keeping anonymous.
On the other hand, the choice of O is more involved
and corresponds to the selection of an attacker model.
As usual, the analysis of a system can be done at a finer
or coarser level. A finer attacker model will lead to a
larger setO, allowing us to discover more attacks at the
cost of a greater number of required samples. Note also
that our method is mostly suitable for analysing passive
attackers, who only observe the output of a protocol
without interfering with it. However, the analysis of
an active attacker is also possible if the attack can be
simulated and samples of the system under the attack
can be produced.

The first information-theoretic anonymity metric
was given by Serjantov and Danezis [26] and inde-
pendently by Diaz et al [14]. They define the degree
of anonymity as the entropy of the distribution that
the attacker assigns to the users after observing the
protocol. This corresponds to H(A|O) (although in the
above papers the model is slightly different and there
is no explicit mention of observable events). A higher
entropy means that the attacker is uncertain about the
anonymous events, so the system offers anonymity.

One disadvantage of the above definition is that it
depends on the distribution of A (the probability of
each user performing the action of interest) or in other
words the prior knowledge that the attacker has about
the users. For example, if one user sends messages
much more often than other users, then the attacker
will naturally assign a higher probability to him, but
this is not a problem of the protocol. Consequently,
we usually need to assume a uniform distribution
of anonymous events, which might be problematic
in cases where the maximum leakage happens for a
non-uniform input distribution. Zhu and Bettati [28]
propose the use of mutual information I(A;O) as
a measure of anonymity. This definition measures
how much information about the anonymous events
is revealed by the attacker’s observation, and is not
limited to a uniform prior distribution. Still, it requires
that a certain prior is fixed.

The next natural step is to maximise the mutual
information over all input distributions, which brings
us to the notion of capacity. Moskowitz et al [23] are
the first to suggest capacity as a measure of anonymity.
They note that covert channels of non-trivial through-
put can be created as a result of non-perfect anonymity.
Then they suggest that the capacity of those channels,
called quasi-anonymous channels, can be used as the
degree of anonymity of the protocol. Chatzikokolakis
et al [7] define channels where the inputs and outputs
consist of the anonymous and observable events re-
spectively. The capacity of such channels is a natural

DAAA ADAA AADA AAAD DDDA DDAD DADD ADDD
user1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
user2 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
user3 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
user4 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

(a) Fair coins

DAAA ADAA AADA AAAD DDDA DDAD DADD ADDD
user1 0.320 0.117 0.070 0.117 0.117 0.070 0.117 0.070
user2 0.117 0.320 0.117 0.070 0.070 0.117 0.070 0.117
user3 0.070 0.117 0.320 0.117 0.117 0.070 0.117 0.070
user4 0.117 0.070 0.117 0.320 0.070 0.117 0.070 0.117

(b) Equally unfair coins (to 3 decimal places)

DAAA ADAA AADA AAAD DDDA DDAD DADD ADDD
user1 0.17 0.08 0.17 0.17 0.08 0.08 0.17 0.08
user2 0.08 0.17 0.08 0.08 0.17 0.17 0.08 0.17
user3 0.17 0.08 0.17 0.17 0.08 0.08 0.17 0.08
user4 0.17 0.08 0.17 0.17 0.08 0.08 0.17 0.08

(c) 2 unfair coins

Figure 1. Probability transition matrices for the Dining Cryptographers protocol

measure of anonymity: it measures how much infor-
mation about the anonymous events is revealed by the
observation, in the case of the worst prior distribution.
As this metric for anonymity avoids the problems with
having to assume knowledge of the input distribution
and can be applied to a wide range of situations we
use it as the basis of our analysis.

A number of authors have used capacity or condi-
tional entropy as a measure of information flow ([21],
[20], [10], [18], [2]). Typically, inputs to the channel
are the secret, high values and the outputs are the low,
public values; the capacity then equals the amount of
information leaked. Our approach may be also useful
in this setting, for estimating information flow from
sampled data.

The Blahut-Arimoto algorithm. In the general case,
there is no analytical formula for capacity. So we use
the iterative Blahut-Arimoto algorithm [1], [5] that can
compute the capacity of an arbitrary channel to within
a given precision. To explain this algorithm we first
observe that mutual information can be written in terms
of relative entropy:

I(Q,W) = H(Q)−H(Q|Y)
=
∑

x

∑
y Q(x)W (y|x) log

(
W (y|x)P

x′ Q(x′)W (y|x′)

)
=
∑

xQ(x)D(W (·|x) ‖
∑

x′ Q(x′)W (·|x′))

We write Dx(W ‖ QW) as short hand for
D(W (·|x) ‖

∑
x′ Q(x′)W (·|x′)). This leads to an up-

per bound for capacity; by observing that, for any set of
numbers {n1, . . . , nm} and any probability distribution

{p1, . . . , pm} it holds that
∑

i pi.ni ≤ maxi ni, we
find that, for all probability distributions Q:

∑
x

Q(x)Dx(W ‖QW)≤C(W)≤max
x

Dx(W ‖QW)

(1)
It can be shown [5] that these inequalities become
equalities when Q is the input distribution that achieves
capacity.

The term Dx(W ‖ QW) can be thought of as a
measure of the effect that choosing the input x has
on the output. Blahut and Arimoto showed that the
maximising input distribution could be found by re-
peatedly increasing this measure. Given a channel W ,
the algorithm starts from an initial input distribution
Q0 (we start from a uniform one, if no better one is
known) and in each step k we obtain a new distribution
Qk+1 by updating the current Qk for each input x as
follows:

Qk+1(x) = Qk(x)
exp(Dx(W ‖ QkW))∑

x′ Q
k(x′) exp(Dx′(W ‖ QkW))

The algorithm is guaranteed to converge to the
capacity achieving distribution Q. Furthermore, (1) can
be used as a stopping criterion as for any ε ≥ 0, ter-
minating the iterations when maxxDx(W ‖ QkW)−
I(Qk,W) ≤ ε ensures that the estimate is within ε of
the true capacity, with equality when the capacity has
been found (i.e., Qk = Q).

Matz and Duhamel [19] propose an accelerated
algorithm with the update:

Q(x)k+1 = Q(x)k exp(µk.Dx(W ‖ QkW))∑
x′ Q(x′) exp(µk.Dx(W ‖ QkW)

where µk = D(QkW ‖ Qk−1W)/D(Qk ‖ Qk−1).
They demonstrate super-linear convergence for this
algorithm, and prove at worst linear in the general case.

The basic Blahut-Arimoto algorithm has been ex-
tended to calculate the capacity of channels with side
information [15] and channels with memory [27],
amongst others. The Blahut-Arimoto algorithm is not
the only way to find capacity (although it does seem to
be the fastest and most general). Other options include
direct calculation for special cases (e.g. [7]), a gradient
search using the Frank-Wolfe algorithm or the Kuhn-
Tucker Theorem/Lagrange Multipliers. Pasquale and
Chen [17] have used Lagrange multipliers to show how
capacity can be found under certain constraints, such
as one particular user being twice as likely to send as
another.

An example: the DC protocol. The Dining Cryptog-
raphers protocol [9] is a typical example of an anony-
mous protocol. In this protocol, one cryptographer is
the payer and wants to communicate this fact to the
others, while staying anonymous. One cryptographer
might be much more likely to pay for the dinner than
the others, so asking how likely each cryptographer
was to be the payer after observing a run of the
protocol does not tell us much about the protocol
itself. So, to analyse the system independently of how
it is used, we base our analysis on the conditional
probabilities of each possible observation given each
possible payer.

The conditional probabilities for three different ver-
sions of the Dining Cryptographers protocol are shown
in Figure 1 (to three decimal places). Here there are 4
users and 6 possible observable actions. Each element
of the matrix gives the probability of each observable
action in the case that the corresponding user is the
payer. Figure 1(a) shows the results of the protocol
based on fair coins. All the outcomes are equally likely
and so nothing can be learnt from the observations:
anonymity is ensured. Figure 1(b) shows the results of
the protocol if the cryptographers use coins that come
up heads three quarters of the time. As the coins are
now more likely to agree, any cryptographer that says
disagree is suspect. Figure 1(c) shows the result of
running the protocol with two honest coins and two
coins that come up heads four out of five times. For
full details of the Dining Cryptographers protocol we
refer the reader to Chaum’s original paper [9].

Clearly, the system is most anonymous with fair
coins, no observation is more likely than any other
under any circumstances, but the other two instances
of the protocol are harder to analyse. Capacity can be
used to find the maximum amount of data that can
be sent through a channel, i.e., what is the maximum
possible information that you can learn about the inputs
from looking at the outputs. If we look at the decision
of who is guilty as the inputs of a channel and the
observable actions of a system as the outputs, then
information theory will give us an absolute upper
bound on what an attacker could learn about the
anonymous events, under the assumption that the set
of observations contains everything the attacker can
observe.

From the probability matrix of the channel we can
calculate its capacity by using the Blahut-Arimoto
algorithm. Applying it to the matrices given in Figure
1, we find that, to four decimal places, the first system
in Figure 1(a) has a capacity of zero, indicating perfect
anonymity. The system in Figure 1(b) has a capacity
of 0.1705 whereas the system in Figure 1(c) has a
capacity of 0.0956, which is achieved when user2 is
50% more likely to be the sender then the other two.
Hence, the protocol is better with two very biased coins
than four somewhat biased coins. If we had analysed
this system assuming that each principal was equally
likely to be the payer we would have underestimated
the worst-case possible information leakage of the
system in Figure 1(c).

3. System model and assumptions

A system in our framework consists of a set of secret
inputs (or anonymous events) X , a set of observable
output actions Y and a probability transition function
W that describes the behaviour of the system. We
require that, given one particular secret input, the
system must act as a probability distribution on the
outputs. This means that if we run the system W
with the input x then there must be a fixed probability
of seeing each observable output (W (y|x) equals the
probability of seeing y given x).

In statistical terms, given a configuration of the
system x, the trial runs of the system must be inde-
pendent and identically distributed. Factors other than
the anonymous event x, that and not accounted for
by the probabilities of the outputs, must not have a
statistically significant effect on the observed actions
of the system.

We consider a passive attacker that observes the
outputs of the system and may try to make deductions

W : the true probability transition matrix for the system
Ŵn : an estimated probability transition matrix for the system from n samples
Q : the input distribution that maximises mutual information for W
Q(Ŵn) : the input distribution that maximises mutual information for a Ŵn

C(W) = I(Q,W) : the true capacity of W
C(Ŵn) = I(Q(Ŵn), Ŵn) : the true capacity of the matrix found by sampling
Q̂m(Ŵn) : the result of running the Blahut-Arimoto algorithm on Ŵn for m iterations
Ĉ(Ŵn) = I(Q̂m(Ŵn), Ŵn) : our estimate of the capacity of W

Figure 2. Key values for estimating capacity

from these outputs but does not interact with the sys-
tem directly. Capacity measures the most information
that can be sent over a channel, no matter how it
is used, so we do not require anything about the
distribution of anonymity events. How the channel is
used does not have to be independent of previous
usages. As long as the observer does not have prior
knowledge of the sequence of anonymity events, they
will not be able to work out more information than the
capacity [11].

Given these assumptions, our analysis estimates
the information leakage as the information-theoretical
capacity of W . This is the maximum amount of
information, in bits, that can be passed over W when
it is regarded as a communication channel. In terms
of anonymity, it is the maximum number of bits that
the attacker can learn about which anonymity event
took place, on average, from observing the system.
An information leakage of log2(#X) means that the
system offers no anonymity, whereas an information
leakage of 0 means that the system is perfectly anony-
mous. A capacity in between these values indicates a
partial loss of information. As with any single value
measure of anonymity we do not distinguish between
a small chance of a total loss of anonymity and a high
probability of a partial loss, rather our figure represents
the average case for the average user, as is common
in information theoretical analysis. We also note that
a statistical approach is ill suited to any measure that
rates a tiny probability of a total loss of information as
much worse than no loss of information because such
a measure would not be continuous as the probability
tended to zero and so would not allow for a accurate
confidence intervals to be found.

Our analysis method makes no assumptions about
the distribution on anonymous events and assesses the
whole system; this means that our results are valid no
matter how the system is used but they cannot say
anything about particular observed runs of the system.
To do so would require one to make assumptions
about the prior distribution, for instance as part of a

Bayesian analysis [3]. Such an analysis (e.g. [8]) gives
the probability of identifying the culprit from given
observations, but would not be valid if the assumptions
are wrong or the users’ behaviour changes.

4. Estimating anonymity

In this paper we focus on capacity as our measure of
anonymity, we now describe how it can be calculated.
There are two main obstacles to finding the capacity of
a real system: first, we must find a probability transi-
tion matrix that reflects the system under test and gives
the conditional probabilities of any observable action
(the outputs) given a particular usage of the system
(the inputs). Second, we must calculate capacity from
this estimated matrix.

To find the probability transition matrix we start by
defining the inputs (the events that we wish to keep
anonymous) and the outputs (the actions observable
to an attacker). As explained in Section 2, the latter
corresponds to defining an attacker model. Some level
of abstraction must be used; this choice should be
made by the user of our method, depending on the
needs of the analysis. Our method requires many more
samples than the number of observations so the more
fine grained the attacker’s observations are, the more
samples we require; we quantify this in Section 6
where we calculate the variance of our results in terms
of the number of inputs, outputs and samples. Defining
the input and output of the channel is a challenging task
and it should be approached with some care, because
it greatly influences the result of the analysis. Our
method deals with the next step, which is computing
anonymity in an automated way after the channel has
been fixed.

Once the inputs and outputs are identified, we may
run trials of the system for each of the inputs and
record the observable outcomes. We use these obser-
vations to construct an estimated matrix. Note that
the approximate matrix can be generated using any
probability distribution on the inputs, that is without

making any assumption about how the system is used.
Calculating the capacity then finds the input distribu-
tion that leaks the most information. Therefore, we can
collect our data for any usage of the system and then
calculate the worst-case scenario.

There are two sources of error in the method we pro-
pose. The first comes from estimating the probability
transition matrix for the system and the second from
the approximation of capacity based on this matrix.
Running a numerical approximation on inaccurate data
does not necessarily lead to meaningful results, but
we prove below that running the Blahut-Arimoto al-
gorithm on an approximate matrix does return a result
that tends to the true capacity as the sample size and
the number of iterations increases.

The values and distributions used in our results are
summarised in Figure 2. Our analysis of a system
is based on the probability transition matrix W that
gives conditional probabilities of each input given each
output, W (o|a) = p(o|a), i.e., the probability of the
attacker seeing observation o given that the system
is started in configuration a. We will estimate W by
running the system n times with a uniform random
input each time. This leads to an estimate Ŵn, which
is a matrix drawn from a normal distribution with mean
W and a variance that decreases as n increases.

Next, we have the input distribution that maximises
the mutual information for W , which we label Q. The
true capacity of the system C is given by the mutual in-
formation for input Q, denoted by C = I(Q,W). Only
in certain cases can we find Q exactly, so we estimate
Q using the Blahut-Arimoto algorithm for m iterations;
we write Q̂m(W) for this distribution. We may also
apply the Blahut-Arimoto algorithm to our estimated
matrix to get Q̂m(Ŵn) which converges to the input
distribution that maximises mutual information for the
estimated matrix Ŵn. This leads to our estimate of
capacity for the system: Ĉ(Ŵn) = I(Q̂m(Ŵn), Ŵn).

The following theorem tells us that this estimate is
good, i.e., with enough samples and iterations of the
Blahut-Arimoto algorithm our estimate of capacity
almost surely converges to the true value:

Theorem 4.1: For any probability pe > 0 and any
real number e > 0 there exists integers n′,m′ such
that for all n > n′ and m > m′ and for an estimated
probability transition matrix found using n samples
Ŵn it holds that

p(|I(Q̂m(Ŵn), Ŵn)− I(Q,W)| > e) < pe

Proof Sketch: Our proof is by contradiction. We
assume that Ĉ does not almost surely converge to
C. Mutual information is continuous and finite for

a fixed number of inputs therefore our assumptions
imply that there must also be a difference between
I(Q(Ŵn),W) and I(Q,W) or between I(Q, Ŵn) and
I(Q(Ŵn), Ŵn), however if these differences exist then
either Q(Ŵn) does not maximise mutual information
for Ŵn or Q does not maximise mutual information
for W , leading to a contradiction. See the appendix for
a full proof.

5. Bounds on the possible error

To be sure of our results we need to know how
close our estimate of capacity is to the real value. We
can find such a bound in two ways. First, as we do
in this section, we can estimate the error in each of
the matrix entries and then calculate the maximum
effect that all of these errors might cause on our
final result. This method is relatively simple but leads
to wide confidence intervals for the final results. A
second method is to calculate the distribution that
our results come from, in terms of the value we
are trying to estimate. This method provides much
tighter bounds but, due to the maximising nature of
capacity, we must relate our results to a lower bound
for capacity: I(Q̂m(Ŵn),W), rather than the true
capacity I(Q,W). While this is a lower bound it is
also zero if, and only if, the true capacity is zero:

Lemma 5.1: Let Ŵn be a randomly sampled matrix
from n samples and Q̂m(Ŵn) be the result of m
iterations of the Blahut-Arimoto algorithm applied to
this matrix, starting from a uniform distribution. Then
I(Q̂m(Ŵn),W) is zero if and only if C(W) is zero.

Each entry in the matrix Ŵn is a single ratio, for
each test run with the input i, either the output o is
observed, or it is not observed, therefore, by the central
limit theorem, Ŵn(o|i) will be normally distributed
around the value W (o|i) and we may calculate a con-
fidence interval for this value, for any given certainty.
We may extend this to calculate the confidence interval
for the biggest error in the whole matrix, the larger
the number of entries and the tighter the confidence
interval the larger the number of samples needed.

In order to extract the error from the logs in our
results we write these errors as ratios, i.e., for a given
confidence interval we calculate elio and egio so that
we may be confident that

∀i, o.Ŵn(o|i).elio ≤W (o|i) ≤ Ŵn(o|i).egio

and take emin to be the minimum of the elio values
and emax to be the maximum of the egio values. By
writing each value of W as a value of We and some

error we can proved the following lemma:

Lemma 5.2: Given Ŵn estimated from samples of
the system W and emax and emin, the largest and
smallest error ratios for any entry in the matrix, then
for any probability distribution X we have that:

emin.(I(X, Ŵn) + log(emin

emax
)) ≤ I(X,W)

≤ emax.(I(X, Ŵn) + log(emax

emin
))

The proof is given in the appendix. By substituting in
Q̂m(Ŵn) and Q for X we find the following bounds
on the true capacity of the system:

Theorem 5.1: Given Ŵn, estimated from samples
of the system W , and emax and emin and an
approximation to the maximising input distribution
for Ŵn found using the Blahut-Arimoto algorithm
(Q̂m(Ŵn)), such that the maximum error on for the
capacity of Ŵn is δ then:

emin.(I(Q̂m(Ŵn), Ŵn) + log(emin

emax
)) ≤ C(W)

≤ emax.(I(Q̂m(Ŵn), Ŵn)+δ+log(emax

emin
)).

The proof is given in the appendix. These bounds
can be useful when all of the probabilities in the
estimated matrix are relatively large and so the error
ratios emax and emin are close to 1. However, when
any of the matrix values are small, the bounds quickly
become too big to be useful and we must turn to the
methods described in the following section.

6. The distribution of anonymity

The process of finding our estimation of capacity can
be looked on as drawing a value from a distribution. In
this section we show that the value comes from a χ2

distribution if and only if the true capacity is zero and
we also find the mean and variance of the distribution
if the capacity is non-zero. This allows us to calculate
confidence intervals for a bound on the true capacity
in terms of our estimated value.

The Blahut-Arimoto algorithm is a numerical pro-
cess and we do not know the distributions of the results
it returns on sampled data. Therefore we relate our
estimation of capacity I(Q̂m(Ŵn), Ŵn) to the mutual
information of the true matrix I(Q̂m(Ŵn),W). We
note that I(Q̂m(Ŵn),W) is zero if and only if C(W)
is zero. Therefore, if our estimate is zero then the true
capacity is also zero, otherwise we take our estimate
to be a close approximation to the true value.

The mean and variance of sampled mutual informa-
tion has been found in the case that both distributions

are unknown ([16], [22]). In our case, we know the
input distribution and only sample to find the outputs.
Therefore, we first solve the general problem of find-
ing mutual information when the input distribution is
known and the matrix is sampled, then we describe
how we use this result to test anonymity.

6.1. The distribution of mutual information

Let us denote the input distribution by X and the
output distribution by Y . Suppose there are I inputs
and J outputs. Let us write pi = P (X = i), i =
0, · · · , I − 1, pj = P (Y = j), j = 0, · · · , J − 1, and
pij = P (X = i, Y = j). In terms of Q and W these
are:
• pi = Q(i)=the probability of seeing i,
• p̂j|i = Ŵn(j|i)=the estimated transition probabil-

ity from input i to output j,
• p̂ij = pi × p̂j|i =the estimated probability of

seeing i and j
• and p̂j = ΣiQ(i).W (j|i)=the estimated probabil-

ity of seeing j.
The mutual information can then be written:

I(X;Y) =
I−1∑
i=0

J−1∑
j=0

pij log
(
pij

pipj

)
,

and estimated Î(X;Y) =
∑I−1

i=0

∑J−1
j=0 p̂ij log

(
p̂ij

p̂ip̂j

)
,

where the p̂’s are the relative frequencies of the corre-
sponding states, based on n samples. Also,

p̂i =
J−1∑
j=0

p̂ij and p̂j =
I−1∑
i=0

p̂ij .

It may be shown that when the inputs have no
relation with the outputs, i.e. I(X;Y) = 0, for large
n it holds that 2nÎ(X;Y) has an approximate χ2

distribution with (I − 1)(J − 1) degrees of freedom,
see [6]. From that, one may say that Î(X;Y) has an
approximate bias (I − 1)(J − 1)/2n and approximate
variance (I−1)(J−1)/2n2. When I(X;Y) > 0, then
it may be shown that Î(X;Y) has mean I(X;Y) +
(I − 1)(J − 1)/2n+O

(
1

n2

)
and variance

1
n

∑
i,j

pij log2

(
pij

pipj

)
−

∑
i,j

pij log
(
pij

pipj

)2

+O
(

1
n2

)
,

see Moddemejer [22]. Brillinger [6] states, that this
distribution is normal.

In the case of our anonymity estimate the situation
is slightly different in that the input distribution is

completely known. Hence, the estimate of I(X;Y) is
modified to

Î(X;Y) =
I−1∑
i=0

J−1∑
j=0

p̂ij log
(
p̂ij

pip̂j

)
There exists no known result that deals with the

asymptotic behaviour of mutual information estimates
in this situation. In this paper, we develop a distribution
of the mutual information estimate for known input
distributions when the output is independent of the
input, i.e., the mutual information is zero, and then
proceed to compute the asymptotic expectation and
variance of the mutual information estimate when its
actual value is non-zero.

First, for I(X;Y) = 0, i.e. X and Y are independent,
we have the following;

Theorem 6.1: When X and Y are independent with
distribution of X known, for large n, 2nÎ(X;Y) has
an approximate χ2 distribution with (I − 1)(J − 1)
degrees of freedom.

The full proof is in the appendix. We note that this
theorem implies that if I(X;Y) = 0 then Î(X;Y) is
drawn from a distribution with mean (I−1)(J−1)/2n
and variance (I − 1)(J − 1)/2n2.

When I(X;Y) > 0, the distribution is no longer
χ2. In this case we have the following result:

Theorem 6.2: When I(X;Y) > 0, Î(X;Y) has
mean I(X;Y) + (I − 1)(J − 1)/2n + O

(
1

n2

)
and

variance

1
n

∑
i

pi

∑
j

pj|ilog2

(
pij

pj

)
−

∑
j

pj|ilog
(
pij

pj

)2

+O
(

1
n2

)
To prove this we rewrite our estimate as:

Î(X,Y) = H(X) + Ĥ(Y)− Ĥ(X,Y)

Where Ĥ is the entropy calculated from the sampled
data. As the distribution X is known we know H(X)
exactly. We proceed by taking the Taylor expansion
of Ĥ(Y) and Ĥ(X,Y) to the order of O(n−2). This
gives us their expected values in terms of the powers
of the expected differences between the entries of the
probability transition matrix and their true values. As
the rows of the matrix are multinomials we know these
expectations (see e.g. [22]). Then, from the expected
values of Ĥ(Y) and Ĥ(X,Y), we find the expected
value of Î(X,Y).

To find the variance we observe that:

V (ÎXY) = V (Ĥ(X,Y)) + V (Ĥ(Y))
− 2Cov(Ĥ(X,Y), Ĥ(Y))

As above we find the variance of ĤXY and ĤY , and
their co-variance from the Taylor expansion and the
expectations of the rows of the matrix. The full proof
is given in the appendix. As suggested by Brillinger
[6] we have verified experimental that this distribution
is approximately normal (see for example Section 4 of
the Appendix).

It may be noted that the expression of the primary
(O(n−1)) part of the variance above reduces to zero
when X and Y are independent, which is consis-
tent with variance of the estimate in the case that
I(X;Y) = 0.

Comparing our result with that of Moddemejer [22],
one point of interest is that the distribution of the
estimate of the mutual information under independence
of the input and the output does not change whether
we know the input or not, and the expectation always
remains the same, but the variance reduces when there
is some information contained about the output in the
input, i.e., when the capacity is non-zero.

In both the zero and the non-zero cases, we have a
bound on the variance:

Lemma 6.1: The variance of the estimates of
mutual information in theorems 6.1 and 6.2 are bound
above by I.J/n where I and J are the sizes of the
distributions’ domains and n is the number of samples
used to find the estimate.

This means that taking more samples than the prod-
uct of the number of inputs and outputs ensures that
the variance will be low and the results accurate. The
ability to generate this many samples, in a reasonable
amount of time, acts as a guide to which systems can
and cannot be analysed statistically. We note, however
that the variance can actually be much smaller than
I.J/n therefore it may also be possible to get a low
variance and accurate results with a smaller number of
samples.

6.2. Using the distributions for anonymity

Our results on the distribution of mutual information
show that the mutual information is zero if, and
only if, the distribution of the estimates has mean
(I − 1)(J − 1)/2n and variance (I − 1)(J − 1)/2n2

(where I is the number of inputs and J the number

of outputs). Whereas, the mutual information is non-
zero if, and only if, the mean is the true value plus
(I − 1)(J − 1)/2n and the variance is the value
given in Theorem 6.2. Therefore our point estimate
of information leakage is:

max(0, I(Q̂m(Ŵn), Ŵn)− (I − 1)(J − 1)/2n).

If a single test falls outside the confidence interval
for zero mutual information then we may take it as
evidence that the capacity is non-zero and calculate
the confidence interval accordingly1. However, a single
test cannot distinguish between zero leakage and a very
small amount. If the result is consistent with the χ2

distribution then we may conclude that the result is
between zero and the upper bound of the confidence
interval for non-zero mutual information. This leads to
the following testing procedure:

A test to estimate information leakage.
1) Fix the secret inputs and observable outputs of

the system under test. Ensure that each run of
the system is independent.

2) Run n tests of the system with a random input
and calculate an estimated matrix Ŵn (to be sure
of good results pick n >> I.J).

3) Calculate e = I(Q̂m(Ŵn), Ŵn) and the point
estimate for anonymity pe = max(0, e − (I −
1)(J − 1)/2n), using enough iterations of the
Blahut-Arimoto algorithm to make the error
in the capacity of the estimated matrix much
smaller than the required accuracy.

4) If 2n times e is inside the 95% confidence
interval of the χ2((I − 1)(J − 1)) distribution
then the confidence interval for the capacity is:
0 to pe+1.65

√
v where v is the variance as given

in Theorem 6.2.
5) If 2n times the point estimate is outside the 95%

confidence interval of the χ2((I − 1)(J − 1))
distribution then the confidence interval for the
capacity is: pe− 1.96

√
v to pe+ 1.96

√
v where

v is the variance as given in Theorem 6.2.
In many situations a very small leakage would be

acceptable, however if we want to be sure of zero
leakage then we have to run multiple tests and check
the goodness of fit of the variance against the zero
and non-zero predictions (tests based on the mean
will not be able to distinguish zero and very small
mutual information). To check compatibility of the
variances we use the test that the observed variance
divided by the true variance should be approximately

1. Here we follow Brillinger and take the non-zero distribution to
be normal.

χ2 with mean one and variance two over the sample
size minus one [4]. For very small values of mutual
information the variance might be consistent with both
predictions, however as the variance of the estimate of
values that are truly zero is O(n−2) and the variance
of the estimate of values that are truly non-zero is
O(n−1) it will always be possible to distinguish these
cases with a large enough n. Therefore, even though
for large degrees of freedom a χ2 distribution will
start to resemble a normal distribution, a large enough
sample size will always be able to tell the zero and non-
zero distributions apart, due to the different orders of
magnitude of the variances. This leads to the following
test:

A test for zero information leakage.
1) Fix the secret inputs and observable outputs of

the system under test. Ensure that each run of
the system is independent.

2) Run 100 analyses with sample size n (as de-
scribed above), to find Ŵ1, . . . , Ŵ100 (theoreti-
cally 40 tests should be enough but 100 tests will
produce smoother results).

3) Calculate an estimate of the maximising in-
put distribution Qe = Qm(Ŵ1), then calculate
I(Qe, Ŵ1), . . . , I(Qe, Ŵ100) and find the vari-
ance of these results: v.

4) Calculate the variance predicted by Theorem 6.1
vzero and by Theorem 6.2 vnotZero.

5) If v/vzero is inside the confidence interval for
χ2(2/n) and v/vnotZero outside the confidence
interval then conclude that the information leak-
age is zero.

6) If v/vzero is outside the confidence interval for
χ2(2/n) and v/vnotZero inside the confidence
interval. Then conclude that the information
leakage is non-zero.

7) If v is consistent with both predictions then
repeat this process with a larger sample size.

We note that, due to the differences in magnitude of
the two variance predictions, this test is guaranteed to
terminate.

7. Tool support for our analysis method

We have implemented a toolkit to calculate our
estimate of anonymity from sampled data, as well as
tools to run the tests and collect observations. The aim
of this implementation is to allow other researchers
to easily calculate anonymity from data they have
found themselves. The program and example files are
available at http://www.cs.bham.ac.uk/∼tpc/AE/.

payerID = cryptoIDs.randomlyShuffle(); // Shuffle the list of cryptos IDs
// Create all the Cryptographer object
for (int i = 0; i < noOfCrypt; i++) {

if (i == payer) {
cryptographers[i] =

new Cryptographer(cryptoIDs.get(i), true, coins[i], coins[i+1], ob);
} else {

cryptographers[i] =
new Cryptographer(cryptoIDs.get(i), false, coins[noOfCrypt-1], coins[0], ob);

}
}
// Start them running
for (int i = 0; i < noOfCrypt; i++) { cryptographers[i].start(); }

Figure 3. Part of the code for the master object

Our implementation is roughly 5000 lines of Java
code. As part of our implementation, we developed a
library that includes methods to efficiently calculate all
of the standard information theory values as well as
an implementation of the Blahut-Arimoto algorithm.
Our tool can also be used to calculate the mutual
information for a given input distribution (such as the
uniform distribution) and to analyse an exact proba-
bility transition matrix, when one can be found, for
instance, from a formal model.

The input to the program is a file with a pair of
the form (input, output) on each line, indicating a
trial of the system under test, started in setup input
that resulted in observation output . The simplicity of
its input is an important advantage of our method. It
does not need to know any details about the actual
protocol, so it can be applied to any system that
can generate a list of input/output pairs. From this
list the program estimates each conditional probability
p(o|i) as (number of times o seen for i)/(number of
times i used as an input). The program then runs
the Blahut-Arimoto algorithm until it gets within a
specified error, or for a maximum number of iterations.
It also automatically calculates the confidence intervals
for the results and makes a correction to the estimate,
as discussed in Section 6. We extend our software to
calculate these distributions and, for multiple samples,
to plot the distribution and calculate the goodness of fit
(see for example Bickel and Doksum [4]). By default,
all results are calculated to a 95% confidence level. The
value of capacity can often be more easily understood
when it is calculated using log2 and so becomes the
number of bits learnt by the attacker. Therefore, we
apply the scaling factor log2(e) to change the base of
the results.

8. Experimental verification of predicated
results

In this section, we provide experimental verifica-
tion of our results by implementing a version of the
Dining Cryptographers protocol. This protocol is often
proved correct as a benchmark for formal models of
anonymity, however, as we show in this section, any
real implementation must deal with a number of subtle
issues, which may lead to the anonymity being much
lower than expected.

Multi-threaded Dining Cryptographers. We have
implemented the Dining Cryptographers Protocol in
Java, defining classes for:

• a master object that decides who pays and flips
the coins using the Java Random library. It sets
n concurrent cryptographer objects running. Each
cryptographer object is told the coins and whether
they pay or not when started.

• n Cryptographer objects that run concurrently
using the Java threads library. Each of these ob-
jects compares its two coins and then announces
“agree” or “disagree”.

• an observer object that listens for, and logs, the
output of each Cryptographer as it happens, and
if needed starts another run of the system.

One possible way to implement the master class is
shown in Figure 3; this randomises the order in which
the cryptographers are declared. The result is a package
that we can use to run consecutive rounds of the Dining
Cryptographers protocol. Each round writes its results
to a log with entries which are pairs of the payer ID and
ID of the first cryptographer to announce their results
and whether they said agree or disagree followed by
the results and ID of the second and so on.

no. of tests 5000 10000 50000 100000 200000 400000 True result
Fair coins 0.0032 0.0013 0.0001 0.0000 0.0000 0.0000 0
All bias coins 0.2136 0.1807 0.1759 0.1708 0.1704 0.1705 0.1705

Figure 4. Estimates converging to their true value

payerID = cryptoIDs.remove(payer); // Find and remove the payer’s ID
// Create a Cryptographer object for each non-Payer
for (int i = 0; i<(noOfCrypt-1); i++) {

cryptographers[i] =
new Cryptographer(cryptoIDs.get(i), false, coins[i], coins[i+1], ob);

}
// Create the Payer
cryptographers[noOfCrypt-1] =

new Cryptographer(cryptoIDs.get(i), true, coins[noOfCrypt-1], coins[0], ob);
// Start them running
for (int i = 0; i < noOfCrypt; i++) { cryptographers[i].start(); }

Figure 5. Part of the code for the master object II

Results from a single test. We ran tests with our
correct implementation of the Dining Cryptographers.
First with 3 cryptographers, fair coins and 100,000
samples, which we know should have capacity zero.
A typical output of our program was:

3 inputs, 4 outputs and 100000 samples
estimate result = 4.1048E-5
correction=log2(e)(inputs-1)(outputs-1)

/2.sampleSize= 4.3280E-5
This is consistent with the chiˆ2
distribution for zero leakage.

Capacity is between 0 and 0.0000

Here the sample size is large enough to make the upper
bound zero to 4 d.p. although this doesn’t rule out a
very small non-zero capacity.

Next, we test the same set up, but with biased coins.
This has a theoretical capacity of 0.1038, and produces
the following results:

3 inputs, 4 outputs and 100000 samples
estimate result = 0.1039
correction=log2(e)(inputs-1)(outputs-1)

/2.sampleSize= 4.3280E-5
This is not consistent with the chiˆ2
distribution for zero leakage.

Capacity is between 0.1038 and 0.1039

Results from multiple tests. With multiple runs, we
can check the goodness of fit of the variance against
the zero of non-zero cases. Running 100 tests, we get
the following results for the zero case:

Results for 100 test of
3 inputs, 4 outputs and 100000 samples

observed mean = 4.1051E-5
observed variance = 5.6186E-10

correction=log2(e)(inputs-1)(outputs-1)
/2.sampleSize= 4.3280E-5

zero variance = 6.2441E-10
non-zero variance = 1.2657E-6

Capacity is zero

The sample size is large enough to clearly distinguish
the variances, so we can correctly conclude that the
capacity is zero. For the biased coins we get:

Results for 100 test of
3 inputs, 4 outputs and 100000 samples
observed mean = 0.1038
observed variance = 3.1746E-6

correction=log2(e)(inputs-1)(outputs-1)
/2.sampleSize = 4.3280E-5

zero variance = 4.2441E-10
non-zero variance = 3.071E-6

Capacity is between 0.1038 and 0.1038

Here the sample size is large enough to find the correct
capacity to 4 d.p. Our tool also produces a visual rep-
resentation of the distribution of mutual information.
Example runs are given in the appendix, and clearly
show a normal and χ2 distribution for the non-zero
and zero information leakage, respectively.

Convergence. As the capacity of the Dining Cryp-
tographers for both fair and equally biased coins is
known, we can use this implementation to demonstrate
our convergence results. Figure 4 shows the results of
two sets of tests, the first has all the coins fair and the
second has all biased coins that come up heads three

times out of four. The true results, found through direct
calculation, are shown on the right hand side of the
table. We see a clear convergence to the true values,
as predicted by Theorem 1.

9. Analysis of a flawed implementation of
the Dining Cryptographers protocol

To demonstrate that our method can find faults in a
system, we revisit the master object from the Dining
Cryptographers example. At first glance the randomi-
sation of the order in which the cryptographers are
declared might seem inefficient; we might be tempted
to simplify the code by avoiding the ID checks inside
the loop and declaring the paying cryptographer last,
as shown in Figure 5.

However, analysing 10,000 runs of this implementa-
tion of the protocol with 4 cryptographers in our tool
tells us that the protocol may be looked on as a channel
with capacity of 2 bits. With 4 cryptographers this
means that the attacker successfully learns the identity
of the payer: this implementation is very broken.
Looking at the probability transition matrix constructed
by our program from the sampled data starts to tell us
why.

Part of this matrix is shown in Figure 6. Here
the rows are labelled with the ID of the payer and
the columns indicate who said what and when, for
instance the column label 0D1A2A3A corresponds to
the cryptographer 0 saying disagree first, followed by
1 then 2 then 3 saying agree. We immediately see that
each output implies a particular input. Looking more
closely, we see that the payer always announces their
results last.

This error is a result of the way in which Java
implements concurrent processes on a single CPU
machine. The system maintains a queue of processes,
executing a single process at a time. The large jobs will
be partially executed and then returned to the queue.
Jobs are often entered into the queue of processes in
the order in which they are declared. Therefore, in our
example, the payer will always be entered last and as
our jobs are not big enough to make the CPU jump,
the payer will always declare last.

This raises the question of what would happen on
a multi-core CPU. This will, of course, depend on
the exact hardware and operating system used. We
repeated our test on a number of different machines
and obtained the results given in Figure 7.

The Linux and Apple operating systems seem to
preempt their processes more often than the Windows
machines and more cores does allow more interleaving.
It is clear from our analysis that even on multi-core

CPUs, the concurrency of threads does not approxi-
mate true concurrency and cannot provide anonymity.
The behaviour of this program on these multi-core
CPUs is an example of the kind of result that could
not be found using a formal model; here it really is
necessary to look at trial runs of a system.

Extra work for the payer. Finally, we consider the
effect of making the payer perform an actual payment.
We alter our code to make the payer open a secure TLS
socket connection, as would be required to securely
send a credit card number.

The effect this has on the observable outcome of the
protocol depends on the speed and type of the hard-
ware. We tested this first on a 900Hz Linux machine
with 1 GB of memory, running 100000 tests always
returned a capacity of 0.42 bits, to 2 decimal places.
Next, we ran the test program on a dual 1.8Gz core
Windows machine with 3 GB of memory. In this case,
the capacity was significantly higher at 1.42 bits (to 2
d.p.). We speculate that the increased capacity was a
result of the faster machine executing the simple non-
payers faster, whereas the random number generation
and encryption required for the TLS handshake still re-
quired significant computation. So, the faster machine
will usually finish the simpler tasks first, making the
payer stand out.

In each case, the capacity is clearly existent. A
leakage of 0.42 bits falls well short of conclusive
evidence but would be enough to hint at the identity
of the payer. So, while the Dining Cryptographers
Protocol is theoretically correct, any attempt by the
payer to actually pay the bill may lead to a loss of
anonymity.

DC-nets [9] is a proposal for an anonymous commu-
nication network built on the Dining Cryptographers
protocol. This protocol calls for the sender to hash,
and possibly encrypt, the data before sending it. An
implementation of DC-nets might leak information in
the same way as our example program did, with the
hash and encryption causing a noticeable delay to
the node sending the message. Unfortunately, there
are no implementations of DC-nets that we can test.
Such a leak may only cause a small amount of in-
formation leakage, and a system designer may well
decide that this is acceptable. Our method allows a
designer to analyse their system to ensure that the loss
of anonymity is within reasonable bounds.

10. Application to the Mixminion remailer

In this section, we show that our method can be
used to analyse a node of the Mixminion anonymous

0D1A2A3A 1D2D3D0A 1A2A3A0D 0D1D3D2A 0A2D3D1D 1A2D3D0D 0A1A3 . . .
0 0.0 0.1238 0.1260 0.0 0.0 0.1237 0.0 . . .
1 0.0 0.0 0.0 0.0 0.1227 0.0 0.0 . . .
2 0.0 0.0 0.0 0.1283 0.0 0.0 0.125 . . .
3 0.1298 0.0 0.0 0.0 0.0 0.0 0.0 . . .

Figure 6. Part of the calculated matrix for the Dining Cryptographers

Operating System 1-core CPU 2-core CPU 4-core CPU 8-core CPU
Linux 1.978 n/a n/a n/a
Windows 2 1.9963 1.9915 1.9843
Apple 1.9999 1.9731 n/a n/a

.

Figure 7. Results of running the broken DC implementation on multi-core machines

Message
orderings out A,B,C out A,C,B out B,A,C out B,C,A out C,A,B out C,B,A
in 1,2,3 0.0 0.0118 0.0473 0.0118 0.0059 0.9231
in 1,3,2 0.0117 0.0 0.0351 0.0292 0.0 0.924
in 2,1,3 0.005 0.0222 0.0278 0.0444 0.0056 0.8944
in 2,3,1 0.0060 0.012 0.0301 0.0361 0.0060 0.9096
in 3,1,2 0.0067 0.0133 0.04 0.02 0.0067 0.9133
in 3,2,1 0.0061 0.0122 0.0549 0.0244 0.0061 0.8963

Figure 8. Probabilities of the message orderings from Mixminion experiments

remailer. In particular, we show the observable outputs
of a single firing of the mix, containing three short
messages, leaks no information about the order in
which messages entered (this of course doesn’t rule
out active attacks, or attacks based on correlating traffic
across the network).

Mix nodes receive messages and after some interval
reorder and forward the messages. Mixminion [13] is
an anonymous remailer that uses a network of mix
nodes to allow users to send anonymous e-mail. Mes-
sages are randomly routed through the network before
being sent to their destination. Each node receives
messages for a fixed length of time before forwarding
all messages together. Some of the messages may be
randomly held over until the next firing. The message
form also hides information such as the length of the
route from the intermediate mixes

Mixes have been the subject of a great deal of
research (see [12] for a survey). Much of this work
is based on analysing formal or statistical models and
uses measures of anonymity that have been specially
developed for the system being analysed. What makes
our work different is that we are computing a general-
purpose definition of anonymity and generating our
data from a real, running mix node.

We test whether an observer can link the order of

three short messages going into a mix with the mes-
sages coming out. These messages were of different
lengths and sent to different e-mail addresses. In the
different tests, we alternated the order in which the
messages entered the mix. So, the secret inputs are the
orders in which the three test messages arrive.

To find the observable outputs of the node we ran
the WireShark2 packet sniffer on our test machine. This
program recorded all incoming and outgoing packets
sent to and from the mix node. To ensure that the
observations of the packets leaving our mix were
authentic we sent our messages to their destination
via real nodes of the Mixminion network3. Once all
the packets had been collected we recorded the size
and number of packets sent to each of the destination
mix nodes and the ordering of the packets to each
node. These digests of the outgoing streams became
the outputs of our channel.

In threshold mode, a mix fires when it has a fixed
number of messages and does not hold messages over
until the next round. This mix strategy is completely
independent between firings, so we used this mode
in our tests. While background network traffic and

2. www.wireshark.org
3. We only sent messages via nodes where we had received

permission from the person running the node, as our test traffic could
easily have looked like an attack on the network.

other programs running on the computer may have
an effect on the output, we avoid this affecting our
results by randomising the order in which the different
input message orderings are tested. Therefore, outside
conditions will effect all the results equally, and so
our experiments fit the requirement of independent and
identically-distributed, as described in Section 3.

To gather our test data we ran our own Mixminion
node. We set the mix time limit to be 2 minutes, and in
each interval sent three known test messages into the
node; hence running it as a threshold mix. We found
that the mixes would occasionally take longer than the
specified interval, so that if we set the interval for less
than 2 minutes our test messages would occasionally
straddle the boundary between mix firings and so
invalidate our results.

We first ran 1000 tests looking only at the ordering
of the packets entering and leaving the mix. The results
are shown in Figure 8. Message 1 was being send
to address A, 2 to B and 3 to C. It was clear that
mixminion usually sent the messages out in a fixed
order (C then B then A), however occasionally a dif-
ferent order was observed. Was this unusual ordering,
or anything else, leaking information on the order
of the incoming messages? Or was it unrelated to
the Mixminion software and due to the computer’s
network card, or network conditions? A quick run of
our software finds that the capacity of this matrix is
0.0024 which is well within the 95% upper confidence
limit for zero leakage (0.0392), therefore there is no
evidence of any loss of anonymity.

Next, we ran 10000 tests, in batches of a few
hundred, over the course of three weeks and, along
with the ordering, also recorded the size and number
of packets sent. We disregarded the results when there
were large amounts of packet loss due to network
disruption; we note that this may be a possible way
to attack a mix network. We observed 436 different
observable outputs in total. The most common obser-
vation by far was 33301 bytes in 32 to 34 packets send
to each of the other nodes, with overlapping streams
starting in a fixed order. However, occasionally the
streams would start in a different order and different
numbers of packets, payload size and timings would
be observed.

Our software calculated the estimated capacity of
the matrix as 0.0249, which is well within the 95%
confidence intervals for the χ2 distribution for the
zero case. Leading to a 95% confidence interval for
the information leakage as between 0 and 0.0414.
Therefore, our result is consistent with a capacity of
zero and we may conclude that, in this instance, there
is no evidence of any loss of anonymity due to the

order in which messages arrive at a Mixminion node.
Of course, there are known attacks that target more
complicated aspects of the Mixminion system; we plan
to investigate whether our method can scale up to
detect such attacks in the future.

11. Conclusion

The capacity of a channel with discrete inputs and
outputs has been proposed as a metric in a number
of areas of computer security. We have shown how
these values can be calculated from sampled data and
used this theory to calculate the levels of anonymity
provided by running programs. Our calculation of the
variance of the estimates can also be used to tell when
systems are, or are not, too complex to successfully
analyse statistically.

As further work, we aim to find the distribution of
estimates of conditional mutual information and an up-
per bound for capacity. For this, we can proceed in the
same way as finding the lower bound; for conditional
mutual information we can find the Taylor expansions
of H(X|Y) and H(X|Y,Z) and for an upper bound on
capacity we can find the expansion of Dx(W ‖ XW).
This would lead to the mean and variance in terms of
the expected differences of the matrix entries, which
are known. For conditional mutual information we can
use the appropriate adaptation of the Blahut-Arimoto
algorithm to find our approximation of the maximising
input distributions [15].

The theory in this paper uses a finite number of
discrete observations. Using continuous versions of
mutual information [24] it may be possible to extend
our methods to handle an infinite number of possible
observations, as long as they are continuous, e.g., time
measurements. This would allow us to analyse systems
with a far greater range of observable actions. We
may also investigate using stateful channels [11], these
are channels with memory, and they would allow us
to calculate the capacity of systems where observable
outputs may depend on all previous inputs.

References

[1] S. Arimoto. An algorithm for computing the capacity of
arbitrary memoryless channels. IEEE Trans. on Inform.
Theory, IT-18(1):14–20, 1972.

[2] Michael Backes and Boris Köpf. Formally bounding
the side-channel leakage in unknown-message attacks.
In ESORICS, pages 517–532, 2008.

[3] T. Bayes. An essay towards solving a problem in the
doctrine of chances. Philo. Trans. of the Royal Society
of London, 53:370–418, 1774.

[4] Peter J. Bickel and Kjell A. Doksum. Mathematical
Statistics: Basic Ideas and Selected Topics. Prentice
Hall, 2006.

[5] R. E. Blahut. Computation of channel capacity and rate
distortion functions. IEEE Trans. on Inform. Theory,
IT-18(4):460–473, 1972.

[6] D. R. Brillinger. Some data analysis using mutual
information. Brazilian Journal of Probability and
Statistics, 18(6):163–183, 2004.

[7] Konstantinos Chatzikokolakis, Catuscia Palamidessi,
and Prakash Panangaden. Anonymity protocols as noisy
channels. Information and Computation, 206:378–401,
2008.

[8] Konstantinos Chatzikokolakis, Catuscia Palamidessi,
and Prakash Panangaden. On the bayes risk in
information-hiding protocols. Journal of Computer
Security, 16(5):531–571, 2008.

[9] David Chaum. The dining cryptographers problem: Un-
conditional sender and recipient untraceability. Journal
of Cryptology, 1:65–75, 1988.

[10] David Clark, Sebastian Hunt, and Pasquale Malacaria.
A static analysis for quantifying information flow in
a simple imperative language. J. Comput. Secur.,
15(3):321–371, 2007.

[11] Thomas M. Cover and Joy A. Thomas. Elements of In-
formation Theory. Wiley series in Telecommunications,
1991.

[12] George Danezis and Claudia Diaz. A survey of anony-
mous communication channels. Technical Report MSR-
TR-2008-35, Microsoft Research, January 2008.

[13] George Danezis, Roger Dingledine, and Nick Math-
ewson. Mixminion: Design of a type iii anonymous
remailer protocol. In In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, pages 2–15, 2003.

[14] Claudia Dı́az, Stefaan Seys, Joris Claessens, and Bart
Preneel. Towards measuring anonymity. In Roger
Dingledine and Paul F. Syverson, editors, Proceedings
of the workshop on Privacy Enhancing Technologies
(PET) 2002, volume 2482 of Lecture Notes in Com-
puter Science, pages 54–68. Springer, 2002.

[15] F. Dupuis, W. Yu, and F. M. J. Willems. Blahut-
arimoto algorithms for computing channel capacity and
rate-distortion with side information. In Information
Theory, 2004. ISIT 2004. Proceedings. International
Symposium on, pages 179+, 2004.

[16] Marcus Hutter. Distribution of mutual information. In
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems 14,
pages 399–406. MIT Press, 2002.

[17] Pasquale Malacaria and Han Chen. Lagrange multi-
pliers and maximum information leakage in different
observational models. In PLAS ’08: Proceedings of
the third ACM SIGPLAN workshop on Programming
languages and analysis for security, pages 135–146.
ACM, 2008.

[18] Heiko Mantel and Henning Sudbrock. Information-
theoretic modeling and analysis of interrupt-related
covert channels. In Pre-Proceedings of the Workshop
on Formal Aspects in Security and Trust (FAST), 2008.

[19] G. Matz and P. Duhamel. Information geometric
formulation and interpretation of accelerated blahut-
arimoto-type algorithms. In Proceedings of the IEEE
Information Theory Workshop (ITW), pages 66–70,
October 2004.

[20] Annabelle McIver and Carroll Morgan. A probabilistic
approach to information hiding. pages 441–460, 2003.

[21] Jonathan K. Millen. Covert channel capacity. In
IEEE Symposium on Security and Privacy, pages 60–
66, 1987.

[22] R. Moddemejer. On estimation of entropy and mutual
information of continuous distributions. Signal Pro-
cessing, 16:233–248, 1989.

[23] Ira S. Moskowitz, Richard E. Newman, and Paul F.
Syverson. Quasi-anonymous channels. In IASTED
CNIS, pages 126–131, 2003.

[24] Liam Paninski. Estimation of entropy and mutual
information. Neural Comp., 15(6):1191–1253, June
2003.

[25] C. R. Rao. On estimation of entropy and mutual
information of continuous distributions. John Wiles and
sons inc., New York, 1965.

[26] Andrei Serjantov and George Danezis. Towards an
information theoretic metric for anonymity. In Roger
Dingledine and Paul F. Syverson, editors, Proceedings
of the workshop on Privacy Enhancing Technologies
(PET) 2002, volume 2482 of Lecture Notes in Com-
puter Science, pages 41–53. Springer, 2002.

[27] P.O. Vontobel, A. Kavcic, D.M. Arnold, and H.-A.
Loeliger. A generalization of the blahut-arimoto al-
gorithm to finite-state channels. IEEE Transactions on
Information Theory, 54:1887 – 1918, 2008.

[28] Ye Zhu and Riccardo Bettati. Anonymity vs. informa-
tion leakage in anonymity systems. In Proc. of ICDCS,
pages 514–524. IEEE Computer Society, 2005.

Appendix

1. Proofs

Theorem A.1 (4.1): With enough samples and iterations of the Blahut-Arimoto algorithm our estimate of capacity
almost surely tends to the true value:

For any probability pe and any real number e > 0 there exists integers n′,m′ such that for all n > n′ and
m > m′ and for an estimated probability transition matrix found using n samples Ŵn it holds that

p(|I(Q̂m(Ŵn), Ŵn)− I(Q,W)| > e) < pe

Proof:
We first prove that the capacity of the probability transition matrix, found by sampling, almost surely converges

to the capacity of the true probability transition matrix, i.e., C(Wn) = I(Q(Wn),Wn) → I(Q,W) = C(W) as
n→∞

We prove this by contradiction: assume that there exists some δ such that for all n′ there always exists an n > n′

such that there is a non-negligible probability that |C(W)− C(Ŵn)| > δ.
Therefore either C(Ŵn) > δ + C(W) or C(W) > δ + C(Ŵn).
• In the first case that C(Ŵn) > δ + C(W)

We know that almost surely Ŵn →W , i.e., for any probability pw and any real number ew > 0 there exists an
n′ such that for all n > n′ it holds that p(|W − Ŵn| > ew) < pw where “−” means the maximum difference
between any matrix entry.
We also know that mutual information is continuous in both arguments and finite for a finite number of inputs
(see for instance Cover and Thomas [11]) therefore for all ε > 0 there exists a m such that for all n > m
almost surely:

|I(Q(Ŵn),Wn)− I(Q(Ŵn),W)| ≤ ε

Now I(Q(Ŵn),Wn) = C(Ŵn) and C(Ŵn) > δ+C(W) therefore, because capacity and mutual information
are always positive we also have that:

|(δ + C(W))− I(Q(Ŵn),W)| ≤ ε

We may choose ε to be much smaller than δ, so:

I(Q(Ŵn),W) > I(Q,W) = C(W)

but as Q should maximise I(Q,W) this is a contradiction.

• The second case C(W) > δ + C(Ŵn) is similar:
The continuity of mutual information tells us that for large enough n and small ε almost surely:

|I(Q(W), Ŵn)− I(Q(W),W)| ≤ ε

Substituting in for capacity, as above we get:

|I(Q(W), Ŵn)− C(Ŵn)− δ| ≤ ε

and so:

I(Q(W), Ŵn) > C(Ŵn) = I(Q(Ŵn), Ŵn)

Again leading to a contradiction, because Q(Ŵn) should maximise the mutual information for Ŵn

Therefore almost surely C(Ŵn) → C(W) as n → ∞. Further more, we know that the Blahut-Arimoto algorithm
ensures that I(Q̂m(Ŵn), Ŵn)→ I(Q(Ŵn), Ŵn) as m→∞ (see for instance Vontobel [27]). So we may conclude
that I(Q̂m(Ŵn), Ŵn)→ C(W) as n,m→∞

Lemma A.1 (5.2): Given Ŵn estimated from samples of the system W and emax and emin, the largest and
smallest error ratios for any entry in the matrix, then for any probability distribution X we have that:

emin.(I(X, Ŵn) + log(
emin

emax
)) ≤ I(X,W) ≤ emax.(I(X, Ŵn) + log(

emax

emin
))

Proof:
We can write the true mutual information in terms of the estimated channel matrix and the (unknown) true error

ratios:
I(Q,W) = Σa,oQ(a).Ŵn(o|a).eao.log

(
Ŵn(o|a).eao

Σa′Q(a′).Ŵn(o|a′).ea′o

)
We expand the log:

I(Q,W) = Σa,oQ(a).Ŵn(o|a).eao.(log(Ŵn(o|a).eao)− log(Σa′Q(a′).Ŵn(o|a′).ea′o))

By definition ∀a, o.eao ≤ emax therefore:

I(Q,W) ≤ Σa,oQ(a).Ŵn(o|a).emax.(log(Ŵn(o|a).eao)− log(Σa′Q(a′).Ŵn(o|a′).ea′o))

The terms inside the logs are both between 0 and 1, therefore the log values are negative and become more
negative as the values inside the log approach 0. So, increasing the term inside the first log and decreasing the
second makes the whole term larger.

I(Q,W) ≤ Σa,oQ(a).Ŵn(o|a).emax.(log(Ŵn(o|a).emax)− log(Σa′Q(a′).Ŵn(o|a′).emin))

Now all the e values are the same we can expand the logs again:

I(Q,W) ≤ Σa,oQ(a).Ŵn(o|a).emax.(log(Ŵn(o|a)) + log(emax)
− log(Σa′Q(a′).Ŵn(o|a′))− log(emin))

We recombine the logs of the errors and move the emax outside the Σ:

I(Q,W) ≤ emax.Σa,oQ(a).Ŵn(o|a).(log(Ŵn(o|a))− log(Σa′Q(a′).Ŵn(o|a′)) + log(emax/emin))

I(Q,W) ≤ emax.(Σa,oQ(a).Ŵn(o|a).(log(Ŵn(o|a))− log(Σa′Q(a′).Ŵn(o|a′)))
+(Σa,oQ(a).Ŵn(o|a)).log(emax/emin))

I(Q,W) ≤ emax.(I(Q, Ŵn) + (Σa,oQ(a).Ŵn(o|a)).log(emax/emin))

The term Q(a).Ŵn(o|a) is the probability of getting a and o, so the sum of these, for all possible o and a is 1.
Therefore we get:

I(Q,W) ≤ emax.(I(Q, Ŵn) + log(emax/emin)

Working in the other direction:

I(Q,W) = Σa,oQ(a).Ŵn(o|a).eao.log
(

Ŵn(o|a).eao

Σa′Q(a′).Ŵn(o|a′).ea′o

)
We expand the log:

I(Q,W) = Σa,oQ(a).Ŵn(o|a).eao.(log(Ŵn(o|a).eao)− log(Σa′Q(a′).Ŵn(o|a′).ea′o))

By definition ∀a, o.emin ≤ eao therefore:

I(Q,W) ≥ Σa,oQ(a).Ŵn(o|a).emin.(log(Ŵn(o|a).eao)− log(Σa′Q(a′).Ŵn(o|a′).ea′o))

The terms inside the logs are both between 0 and 1, therefore the log values are negative and become more
negative as the values inside the log approaches 0. So, deceasing terms inside the first log and increasing the
second makes the whole term smaller.

I(Q,W) ≥ Σa,oQ(a).Ŵn(o|a).emin.(log(Ŵn(o|a).emin)− log(Σa′Q(a′).Ŵn(o|a′).emax))

Now all the e values are the same we can expand the logs again:

I(Q,W) ≥ Σa,oQ(a).Ŵn(o|a).emin.(log(Ŵn(o|a)) + log(emin)
− log(Σa′Q(a′).Ŵn(o|a′))− log(emax))

We recombine the logs of the errors and move the emin outside the sigma:

I(Q,W) ≥ emin.Σa,oQ(a).Ŵn(o|a).(log(Ŵn(o|a))− log(Σa′Q(a′).Ŵn(o|a′)) + log(emin/emax))

I(Q,W) ≥ emin.(I(Q, Ŵn) + log(emin/emax).Σa,oQ(a).Ŵn(o|a))

The term Q(a).Ŵn(o|a) is the probability of getting getting a and o so the sum of these for all possible o and
a is 1.

I(Q,W) ≥ emin.(I(Q, Ŵn) + log(emin/emax)

Theorem A.2 (5.1): Given Ŵn estimated from samples of the system W and emax and emin and an approximation
to the maximising input distribution for Ŵn found using the Blahut-Arimoto algorithm Q̂m(Ŵn) such that the
maximum error for the capacity of Ŵn is δ then:

emin.(I(Q̂m(Ŵn), Ŵn) + log(emin

emax
)) ≤ C(W) ≤ emax.(Q̂m(Ŵn) + δ + log(emax

emin
))

Proof: Lemma 5.2 holds when X = Q therefore C(W) = I(Q,W) ≤ emax.(I(Q, Ŵn) + log(emax/emin).
The capacity of Ŵn is, by definition, equally to or greater than I(Q, Ŵn) therefore C(W) ≤ emax.(C(Ŵn) +
log(emax/emin) and the limits on the Blahut-Arimoto algorithm insure that C(Ŵn) ≤ I(Q̂m (̂̂Wn), Ŵn)+δ therefore
C(W) ≤ emax.(Q̂m (̂̂Wn) + δ + log(emax/emin).

In the other direction, substituting Q̂m (̂̂Wn) for X in Lemma 5.2 we get emin.(I(Q̂m (̂̂Wn), Ŵn) +
log(emin/emax) ≤ I(Q̂m (̂̂Wn),W) ≤ I(Q,W) = C(W).

2. Proof of Theorem 6.1

Theorem A.3 (6.1): When X and Y are independent with distribution of X known, for large n, 2nÎ(X;Y) has
an approximate χ2 distribution with (I − 1)(J − 1) degrees of freedom.

Proof: The proof follows by observing that the mutual information statistic can be viewed as a loglikelihood
ratio statistic for independence of the input and output distribution which have I and J classes respectively, and
one category is fixed and controlled. This statistic is in turn approximately equal to

χ2 =
∑

i

∑
j

(Kij − piK·j)2

piK·j
, (2)

where Kij = np̂ij = npip̂ji is the number of observations (X = i, y = j) in n samples, and K·j :=
∑i−1

i=0 Kij .
Following computations similar to those found in [25], Pg 407, as (J − 1) parameters are being estimated, (J

of the pj’s are being estimated, but their sum is 1) the quantity χ2 in (2) has an approximate χ2 distribution with
(IJ−I)−(J−1) = (I−1)(J−1) degrees of freedom. An intuitive explanation of the initial degrees of freedom is
that it is the dimension of the subspace for the data, calculated in this case by the number of cells of the matrix of
the joint probabilities minus the total number of linear restrictions. There are a total of I linear restrictions because∑J−1

j=0 pij = pi is known for i = 0, ...I−1. Further J −1 degrees of freedom are lost by the subsequent estimation
of the parameters pj .

3. Proof of Theorem 6.2

Theorem A.4 (6.2): When I(X,Y) > 0, the estimate Î(X,Y) has mean I(X,Y) + (I − 1)(J − 1)/2n+O
(

1
n2

)
and variance

1
n

∑
i

pi

∑
j

pj|ilog2

(
pij

pj

)
−

∑
j

pj|ilog
(
pij

pj

)2
+O

(
1
n2

)
,

Proof of Theorem 6.2:
Let Kij be the number of observations (X = i, y = j) in n samples. Note that using the fact that pi is known,

Kij = np̂ij = npip̂ji.

Then, K̄ij := E(Kij) = npij = npipj|i = Kpj|i. We have that Ki· :=
∑j−1

j=0 Kij is fixed and is equal to npi,
which is a known number. K·j :=

∑i−1
i=0 Kij has expectation K̄j :=

∑I−1
i=o K̄ij . Thus, K̄j = npj . With these

definitions, we can write:
Î(X,Y) = H(X) + Ĥ(Y)− Ĥ(X,Y), (3)

where H(X) is the entropy of X , H(Y) and H(X,Y) similarly defined; Ĥ(X,Y) = −
∑

i,j
Kij

n log
(

Kij

n

)
and

Ĥ(Y) = −
∑

j
K·j
n log

(
K·j
n

)
.

Notice that for each i, Kij’s are multinomial with parameters Ki·, p0|i, · · · , pJ−1|i. Since the Ki·’s are fixed, for
i 6= i′, Kij and Ki′j′ are independent.

Thus, from properties of the multinomial distribution (see [22])

V (Kij) = Ki·pj|i(1− pj|i), Cov(Kij ,Kij′) = −Ki·pj|ipj′|i if j 6= j′, and Cov(Kij ,Ki′j′) = 0 if i 6= i′,

and

E(Kij − K̄ij)3 = Ki·(2p3
j|i − 3p2

j|i + pj|i) = K̄ij(2p2
j|i − 3pj|i + 1)

E(Kij − K̄ij)4 = K2
i·(p

4
j|i − 2p3

j|i + p2
j|i) +O(n) = K̄2

ij(p2
j|i − 2pj|i + 1) +O(n).

Now, using a Taylor expansion of ĤXY = −
∑

ij
Kij

n log
(

Kij

n

)
with respect to K̄ij , we can write that

ĤXY = −
∑
ij

K̄ij

n
− 1
n

∑
ij

(
1 + log

(
K̄ij

n

))
−
∑
ij

(Kij − K̄ij)2

nK̄ij
+
∑
ij

(Kij − K̄ij)3

6nK̄2
ij

+O(n−2). (4)

Taking expectation of (4), we have

E(ĤXY) = −
∑
ij

K̄ij

n
log
(
K̄ij

n

)
−
∑
ij

E(Kij − K̄ij)2

nK̄ij
+
∑
ij

E(Kij − K̄ij)3

6nK̄2
ij

+O(n−2)

= HXY −
∑
ij

(1− pj|i)
2n

+
∑
ij

(2p2
j|i − 3pj|i + 1)

6nK̄ij
+O(n−2)

= HXY −
I(J − 1)

2n
+O(n−2). (5)

By similar calculations as (5), we get,

E(ĤY) = HY −
J − 1

2n
+O(n−2),

which, combined with (5), concludes from from (3) that

E(ÎXY) = IXY +
(I − 1)(J − 1)

2n
+O(n−2).

Now, observe that

V (ÎXY) = V (ĤXY) + V (ĤY)− 2Cov(ĤXY , ĤY). (6)

But, from (4)

V (ĤXY) =
1
n2
E

∑
ij

(
1 + log

(
K̄ij

n

))
(Ki·j − K̄ij)

2

+O(n−2)

=
1
n2

∑
ij

(
1 + log

(
K̄ij

n

))2

V (Kij) +
∑

i

∑
j 6=j′

(
1 + log

(
K̄ij

n

))(
1 + log

(
K̄ij′

n

))
Cov(Kij ,Kij′)

+O(n−2)

=
1
n2

∑
i,j

(1 + log
(
K̄ij

n

))2

Kipj|i(1− pj|i) +
∑
j′ 6=j

(
1 + log

(
K̄ij

n

))(
1 + log

(
K̄ij′

n

))
(−Kipj|ipj′|i)

+O(n−2)

=
1
n2

∑
i

Ki·

∑
j

pj|i

(
1 + log

(
K̄ij

n

))2

−
∑

j

pj|i

(
1 + log

(
K̄ij

n

))2
+O(n−2) (7)

Now, noticing that Ki·/n = pi,
K̄ij

n = pij ,

1
n2

(1 + log pij)2 =
log2 pij

n2
+O(n−2) and(

∑
j

pj|i(1 + log pij))2 = (
∑

j

pj|i log pij)2 +O(n−2)

we can simplify (7) to

V (ĤXY) =
1
n

∑
i

pi

∑
j

pj|i log2 pij − (
∑

j

pj|i log pij)2) +O(n−2)

 . (8)

Using similar calculations as in (8), we get

V (ĤY) =
1
n

∑
i

pi

∑
j

pj|i log2 pj − (
∑

j

pj|i log pj)2) +O(n−2)

 . (9)

Finally, we have that

Cov(ĤXY , ĤY) =
1
n2

∑
i

∑
j,j′

(
1 + log

(
K̄ij

n

))(
1 + log

(
K̄·j′

n

))
Cov(Kij ,K·j′) +O(n−2)

=
1
n2

∑
i

∑
j,j′

log(pij)log(pj)Kipj|i(I(j = j′)− pj′|i) +O(n−2)

=
1
n

∑
i

pi

∑
j

pj|i log pij log pj − (
∑

j

pj|i log pij)(
∑

j

pj|i log pj)

+O(n−2). (10)

Combining (8), (9) and (10), we get that

V (Î(X,Y))

=
1
n

∑
i

pi

∑
j

pj|i(log2 pij + log2 pj − 2 log pij log pj)

− 1
n

∑
i

pi

(
∑

j

pj|i log pij)2 + (
∑

j

pj|i log pj)2 − 2(
∑

j

pj|i log pij)(
∑

j

pj|i log pj)

+O(n−2)

=
1
n

∑
i

pi

∑
j

pj|i log2 pij

pj
− (
∑

j

pj|i log
pij

pj
)2

+O(n−2).

4. Program output for the Dining Cryptographers protocol

We have verified our theoretical results by running trials of systems for which we know the true capacity. We
give two examples below with plotted distributions, calculated by the tool we developed. The first is of a system
that has a capacity of zero and shows a χ2 distribution. The second is of a system with a non-zero capacity and
shows a normal distribution. In both cases, the variance is as predicted.

3 cryptographers, fair coins and 100,000 samples.

| *
| *
| *
| * *
| * *
| ** *
| * *** *
| ** *** *
| ******* * *
| ********* *
| ************
| ************
| ************* * *
| ******************* *
_______|_______________________________

M

Results for 100 test of
3 inputs, 4 outputs and 100000 samples

observed mean = 4.1051E-5
observed variance = 5.6186E-10

correction=log2(e)(inputs-1)(outputs-1)
/2.sampleSize= 4.3280E-5

zero variance = 6.2441E-10
non-zero variance = 1.2657E-6

Capacity is zero

3 cryptographers, biased coins and 100,000 samples.

*
* *
* *
* * *
* * **
* * **

* * * ***
* * * ****

* * **********
************** **

* ***************** *
* * ******************* * *

_____________________|________________
M

Results for 100 test of
3 inputs, 4 outputs and 100000 samples

observed mean = 0.1038
observed variance = 3.1746E-6

correction=log2(e)(inputs-1)(outputs-1)
/2.sampleSize = 4.3280E-5

zero variance = 4.2441E-10
non-zero variance = 3.071E-6

Capacity is between 0.1038 and 0.1038

