
1

Securing Pseudo Identities in an Anonymous
Peer-to-Peer File-Sharing Network

Tom Chothia
CWI, Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands.

Email: Tom.Chothia@cwi.nl

Abstract— MUTE is an anonymous peer-to-peer network that
is used by hundreds of thousands of people to share files. Peers in
this network are identified by randomly chosen pseudo identities
and a probabilistic time-to-live counter is used to stop an attacker
from being able to tell how far a search has come or has to go.
The aim of the system is to hide the IP addresses of the file-
sharers from an attacker that is acting as one or more peers
inside the network. This paper describes the MUTE system, and
then goes on to outline an attack on the anonymity of a peer
based on “stealing” pseudo identities. We then show how using
an authentication key as a pseudo identity can stop this attack
and we describe the implementation of this solution as part of
the MUTE system.

I. I NTRODUCTION

MUTE is an anonymous peer-to-peer file-sharing system;
with over 900,000 downloads1 it is one of the most popular
anonymous file-sharing systems and has served as the inspi-
ration for a number of similar systems [1], [4] and academic
papers [2], [4], [5], [8].

Peers using MUTE will connect to a small number of other,
known peers; only the direct neighbours of a peer know its
IP address. Communication with remote peers is provided
by sending messages hop-by-hop across this overlay network.
Routing messages in this way allows MUTE to trade efficient
routing for anonymity.

There is no way to find the IP address of a remote peer,
and direct neighbours can achieve a level of anonymity by
claiming that they are just forwarding requests and files for
other peers. In this way peers in the network keep their file-
sharing activity secret from an attacker who may be acting as
one or more peers in the network. There is no anonymity from
an attacker who can monitor the entire network or be sure that
they have a peer completely surrounded.

Every peer picks a random pseudo ID that it uses to identify
itself. When a peer receives a new message it records the
connection over which the message was received as a possible
route to the pseudo ID that the message was from. In this way
the peer builds a routing table for each pseudo ID. There is a
danger that an attacker may be able to link the pseudo identity
and the IP address of its direct neighbours, and thus find out
which files the neighbours are requesting and offering.

An attacker, acting as a peer in the network, can “steal”
a pseudo identity by sending fake messages using the target
identity as the “from ID”. If it sends enough messages then

1source:http://sourceforge.net/projects/mute-net

its neighbouring peers will forward messages addressed to the
target identity over their connection with the attacker. The one
exception to this is if the identity the attacker is trying tosteal
belongs to the neighbour, as the neighbour will never forward
messages addressed to itself. Therefore the attacker can use
this method of stealing identities to test any identity it sees; if
the identity cannot be stolen then it belongs to the neighbour.

We solve this problem by stopping the attacker from being
able to forge messages. We do this by having all peers start
by generating an authentication and signature key. The peers
can then use the authentication keys as their pseudo identities.
These authentication keys would be used in exactly the same
way as the peers’ identities. However, each peer would also
sign the message ID. When any peer receives a message,
it can check the signed message ID using the “from ID”
authentication key. As the attacker cannot correctly sign the
message ID it can no longer forge messages.

We first discovered the existence of an attack by modelling
MUTE in the pi-calculus [5]. The contribution of this paper
is a technical description of MUTE and the attack, the fix
for that attack and the description of how this fix was added
to MUTE. The use of a public key as an identity has been
proposed as a way to stop denial of service attacks in IP6 [10].
There are a number of other systems and theoretical designs
for anonymous file-sharing, for full details we refer the reader
to our previous survey paper [6].

In the next section we describe the MUTE routing protocol,
and then in Section III we outline our attack on MUTE.
Section IV shows how these kinds of attacks can be stopped
and describes the fixes made to the MUTE system.

II. T HE MUTE PEER-TO-PEER FILE-SHARING SYSTEM

The MUTE system is based on the Ant Colony Optimisa-
tion algorithm [7], which is in turn based on the way ants
use pheromones when looking for food [3]. The peers in a
MUTE network form a fixed overlay network, as illustrated
in Figure (a), each peer connects to a number of other peers
(its neighbours). The only way in which new connections can
be made is if an IP address is manually entered into a peer2.
This means that there is no way for a peer in the network
to learn the IP address of a remote peer. Communication
between any two peers is encrypted using a AES symmetric

2A “Blender” service offers new peers a limited number of randomly chosen
peer IP addresses, so that they may join the network in a safe way



2

E

B

C

F

H

D
G

A

(a) A network of peers

A

A

A

A

A
A

A

E

B

C

F

H

D
G

A

(b) routing tables after a search byA . . .

G

A

A

A

A

A
A

A

E

B

C

F

H

D

A

F

F

F

(c) . . . and after a reply byF

key and communication between remote peers is possible only
by sending messages hop-by-hop across this overlay network,
encrypting and decrypting the message on each hop.

In order to build up an “ad-hoc” routing table for the overlay
network of peers, each peer picks a random 160 bit number
as a “pseudo ID”. This ID is used as an address for the peer,
and any message that originates from that peer is labelled with
it. The connection that brings messages from a pseudo ID is
also a possible connection over which to send messages to
that pseudo ID therefore each peer can dynamically construct
a routing table by recording the connections on which the
messages arrive as the route to that ID. When multiple
connection carry messages from the same ID, the fastest, most
used connection will usually be the best.

In order to search the network, a peer broadcasts a search
message with its own pseudo ID, a unique message identifier
and a probabilistic time-to-live counter. The search message is
sent to the peer’s neighbours, which in turn send the message
to all of their neighbours until the time-to-live counter runs
out. Upon receiving a message a peer first checks the message
identity and discards any repeated messages, it then records
the connection on which the message was received and the
pseudo ID of the sender. The results of peerA sending a search
message are illustrated in Figure (b). As the search message
fans out each peer records the direction it came from. Peer
E will receive two copies of the message, one fromB and
another fromC, here we assume the connectionA, B, E is
faster thanA, C, E, and so the peerE discards the message
from C and adds the connection toB to its routing table.

If the peerF , for instance, wants to reply to the search it
forms a reply message addressed toA and marked as coming
from F . PeerF does not know the location ofA but it does
know which of its connections is part of the fastest route to
A, so it sends the message over that connection. Each peer
does the same and the reply makes its way toE, then toB

and finally toA. At the same time each of these peers record
which direction the message fromF came from in its routing
table, as illustrated in Figure (c).

We note that the routing table tells the peers what direction
to send messages addressed to a given pseudo ID, but not
which peer has that ID. This inability to link pseudo IDs and

IP addresses is the basis of the anonymity offered by MUTE.
For instance, in the exchange above, no peer can be sure that
their neighbour was the up-loader or the down-loader.

To stop peers using the message’s time-to-live counter to
work out where a search originates or ends a three phase
probabilistic “Utility Counter” is used. The first phase, is
equivalent to the originator of the message picking 1, with
probability 2

3
, or 2 with probability 2

9
, or n with probability

2

3n
. This value is then counted down by 1 each hop. When it

reaches 0 the peer moves to the second phase, which forwards
the message for 5 hops. A message with an expired time-to-
live counter will be dropped with probability3

4
, or forwarded

to n randomly chosen neighbours with probability1
2n+2 .

We now describe the details of the MUTE routing protocol:
• On start up the MUTE application generates a pseudo ID

and a 1024-bit RSA public/private key pair. It also fixes
the values of the utility counter that it will use in all of
its searches (hence avoiding a statistical attack).

• The peer then attempts to make connections to its list of
other known peers and uses its public key to set up a
AES 128-bit symmetric session key for each connection.

• After establishing its connections it selects a subset of
these peers to which it will forward messages with
expired utility counters, as described above, and creates
an empty list of “seen” message IDs and an empty routing
table.

The peer is then ready to start sending and receiving
messages. These messages have the following format:

MessageID: 6 digit number & a time stamp
From ID: The pseudo ID of the sender
To ID: The pseudo ID of the recipient

or "ALL" for searches
Flags: The phase of the counter and

maybe ROUTE_ONLY | FRESH_ROUTE
UtilityCounter: base-10 ASCII counter value
Length: The length of the body
Body: AES encrypted message

The flags allow for a fine-grained control over the routing:
The ROUTEONLY flag indicates that the peer should only
forward the message if it has the “To ID” in its routing table.



3

The FRESHROUTE flag indicates that the peer should delete
both the sender and the receiver from its routing table.

Search messages are addressed to “ALL” and are sent to
all of the peer’s neighbours with the utility counter value that
was chosen when the peer started up. When a peer receives a
message it processes it in the following way:

• If the message ID is in the list of seen message IDs or the
time-stamp3 is old the message is discarded. Otherwise
the message ID is added to the list of seen messages.

• If there is a list of channels for the “From ID” in the
routing table then the peer adds the channel on which
the message was received (dropping the oldest channel
if there are now more than 50). If the “From ID” is not
in the routing table it is added along with the channel
it arrived on. The oldest “From ID” is dropped if the
routing table now contains more than 50 IDs.

• If the “To ID” is ALL, or the “To ID” is unknown, and the
utility counter has not expired the peer reduces the time-
to-live and forwards the message to all of its neighbours,
decrypting and re-encrypting the body of the message
with the appropriate AES key. If the utility counter has
expired then the message is only forwarded to the subset
of peers selected at start up, if any.

• If the local routing table includes a list of channels for
the “to ID” then the peer selects one of these channels
at random. As repeat messages do not add entries to
the routing table, selecting randomly will return one of
the fastest, most used channels. The peer forwards the
message on this channel, encrypted with the AES key
for that channel.

The peer can then process and reply to the message, if
necessary.

III. D ESCRIPTION OF THEATTACK ON MUTE

The attacker can “steal” an ID by sending fake messages
using the ID it wants to steal as the “from ID”. Any peer that
receives such faked messages will incorrectly add entries to its
routing table indicating that it should send messages addressed
to the ID along its connection to the attacker, rather than the
connection that leads to the original owner of the ID.

If the attacker sends enough messages then it can be sure
that its neighbours will send all messages addressed to the
stolen ID in its direction. The only exception to this is if the
ID the attacker is trying to steal belongs to the neighbour, as
the neighbour will never forward messages addressed to itself.
Therefore the attacker can use this method of stealing IDs to
test any IDs it sees; if an ID cannot be stolen then the ID
belongs to the neighbour.

We saw in Section II that MUTE looks at the 50 most recent
messages when deciding where to route a message. This means
that if the attacker can send 50 messages with the target ID to
its neighbour, without any messages with that ID coming from
anywhere else, then the attacker knows that it must receive
any messages sent to that ID via the target peer, unless the ID
belongs to the target peer. But how can the attacker be sure

3To avoid the exact time leaking any location information a Lamport style
counter [9] is used

that the target peer’s routing table is not also being affected
by real messages from the target ID, which are not past onto
the attacker? If the attacker receives a search message from
a neighbour once, it knows that all other messages that the
neighbour receives in the same way will also be forwarded to
the attacker. However it is possible that the neighbouring peer
could receive messages from the target ID via two different
routes, one of which is dropped before being passed onto the
attacker. This would pose a problem as if the attacker cannot
detect all of the messages coming into the neighbouring peer
then it cannot be sure that it has successfully stolen the ID.

Luckily, for the attacker, only IDs that are seen on search
messages with phase-1 counters are possibilities for the neigh-
bours ID and only search messages with phase-3 counters can
be dropped. If the attacker sees some messages with a phase-1
counter and others reach the neighbour with a phase-3 counter
and are dropped, we know that the messages that are dropped
must be slower. These slower messages will be discarded as
duplicates by the target peer, therefore they will not affect the
routing table.

There is still a small possibility that the neighbour is
receiving or forwarding a file from the real owner of the ID, in
which case the large number of messages that the neighbour
is receiving might mean the attacker fails to steal an address
that does not belong to the target peer. To avoid this possibility
the attack can be repeated at regular intervals. The attack on
MUTE would run as follows:

1) The attacker uses MUTE’s blender service to find the IP
address of a peer, makes two connections to it, monitors
these connections and selects the “from ID” with the
highest, phase-1, utility counter.

2) The attacker forms new search messages using the
selected ID as the “from ID” and repeatedly sends them
to the neighbour until it has sent 50 messages without
receiving any messages from the ID it is trying to steal.

3) The attacker then sends a reply message addressed to
the selected ID along its other connection with the target
peer.

4) If the attacker receives the message back then the
selected ID does not belong to the target peer, so
the attacker must select another ID and start again.
Otherwise, with a high degree of probability, the attacker
has found the neighbour’s ID and can then find out what
files the neighbour is sharing.

IV. SECURE PSEUDO IDENTITIES

The attack is made possible by the MUTE protocol’s
adaptive routing system and the fact that peers will never
forward messages addressed to themselves. Key to the success
of the attack is the attacker’s ability to fake messages with
another peer’s ID.

We can solve this problem by stopping the attacker from
being able to forge messages. We are only interested in
stopping the creation of fake messages that use someone
else’s ID. We are not interested in the actual value of the
pseudo ID and we wish to maintain MUTE decentralised
nature. Our solution is to have all peers start by generating



4

an authentication and signature key. The peers then use the
authentication keys as their pseudo IDs. This authentication
key would be used in exactly the same way as the peers’ ID.
However, each peer would also sign the message ID. When
any peer receives a message, it can check the signed message
ID using the “from ID” as the key. As the attacker cannot
correctly sign the message ID it can no longer forge messages.
This scheme is, in general, backwards compatible: older peers
need not be aware that the ID is also an authentication key.
The checking is also optional; peers may choose to only check
messages if they spot suspicious activity.

The level of popularity enjoyed by any system that claims to
offer anonymity to the user will be partly based on the level of
trust potential users place in these claims. To maintain a level
of trust in the MUTE system it was important to implement
this fix before the flaw became widely known. So we contacted
the developers of the MUTE system and suggested the fix
described in this section. They where pleased to have the attack
pointed out to them however they also had a strong desire to
ensure that the fix was backwards compatible with the previous
version of MUTE. This meant that the IDs could not be longer
than 160 bits, which is too short for a RSA public key.

SHA1 hashes are exactly 160 bits so we use a SHA1 hash
of the peer’s 1024-bit RSA public key as the pseudo ID (the
same public key that the peers use to exchange their symmetric
channel keys). We sign the message ID along with the counter
time-stamp and only forget message IDs that have a time-
stamp that is too old to accept. A very patient attacker could
wait for the counter to loop and then run a replay attack. So
the peers record the value of the counter at which they picked
their IDs and change to a new ID if they ever loop round.

The prefix PKH is added to the new pseudo IDs
and two flags are added to the flags part of the message
headers: “PUBLIC_KEY_key”, where “key” is the hex-
encoded RSA public key used to sign the message ID and
“SIGNED_ID_sig”, where “sig” is the message ID (including
the time-stamp) signed with the private key. So the start of
the message header changes from:

(MessageID ,From ID ,To ID ,FLAGS : ...

to become:

(MessageID , #(Ka ),To ID ,FLAGS : PUBLIC KEY Ka ,

SIGNED ID SKs
(MessageID), ...

Where Ka is the public (authentication) key,#(Ka) is the
SHA1 hash ofKa, which is being used as the “From ID”,
and SKs

(MessageID) is the message ID signed with the
private (signature) key.

When one of the updated peers receives a message, after
checking to see if the message ID is a repeat, it checks to see
if the “from ID” starts with PKH , if so it checks that the
hash of the key part of thePUBLIC_KEY flag matches the
rest of the “from ID” and that the signature of the message ID
matches theSIGNED_ID flag. If either of these fail to match,
or the flags are not present, then the message is discarded.
Older peers, oblivious of all this, will ignore the flags and
process the message as before. These older peers are still at

risk.
The use of a hash of the key is secure: in order to generate

a legitimate message for a pseudo ID that is a hash of an
authentication key the attacker would have to come up with
an authentication key that matched the hash, a new message
ID and the signature of that message ID that matched the
authentication key. Assume for contradiction that the attacker
can come up with these, if the authentication key in the
message header is the same as the one given to the attacker
then the attacker has broken the RSA signature scheme.
Whereas, if the authentication key in the header is different,
but still matches the hash, then the attacker has broken the
SHA1 hash collision problem for a given hash. Both of these
problems have been shown to be computationally hard.

Tests run by MUTE’s developers found that the extra crypto-
graphic operations did not increase download times noticeably.
This was because the biggest time delay in the system is
caused by the hop-by-hop routing, compared to which the extra
cryptographic operations where insignificant.

This solution was added to the 0.5 release of MUTE,
the C++ source code is available athttp://mute-net.
sourceforge.net. Since its release in June 2006 the code
has been downloaded over 150,000 times.

V. CONCLUSION

The attack on MUTE we have described involves trying to
force a neighbour to misroute messages addressed to an ID;
this only succeeds if the ID does not belong to the neighbour.
We fix MUTE by using the hash of an authentication key as
the peers’ pseudo ID. It may be possible to carry out similar
attacks on other ad-hoc networks in which the nodes generate
their own IDs, a similar defence may also be useful.

Acknowledgement: We would like to thank Jason Rohrer
for his helpful comments on this work. This work was partly
supported by the ITEA Trust4all and Credo EU STREP
033826 projects.

REFERENCES

[1] Ants p2p, http://antsp2p.sourceforge.net/, 2003.
[2] Andres Aristizabal, Hugo Lopez, Camilo Rueda, and FrankD. Va-

lencia. Formally reasoning about security issues in p2p protocols:
A case study. InThird Taiwanese-French Conference on Information
Technology (TFIT), 2005.

[3] R. Beckers, J. L. Deneubourg, and S. Goss. Trails and u-turns in
the selection of the shortest path by the ant lasius niger.Journal of
Theoretical Biology, 159:397–415, 1992.

[4] Steve Bono, Christopher A, Soghoian, and Fabian Monrose. Mantis:
A high-performance, anonymity preserving, p2p network, 2004. Johns
Hopkins University, Tech. Rep. TR-2004-01-B-ISI-JHU.

[5] Tom Chothia. Analysing the mute anonymous file-sharing system using
the pi-calculus. InFORTE2006, volume 4229 ofLNCS, 2006.

[6] Tom Chothia and Konstantinos Chatzikokolakis. A surveyof anonymous
peer-to-peer file-sharing. InEUC Workshops, LNCS, volume 3823, 2005.

[7] Marco Dorigo and Gianni Di Caro. The ant colony optimization meta-
heuristic. In David Corne, Marco Dorigo, and Fred Glover, editors, New
Ideas in Optimization, pages 11–32. McGraw-Hill, London, 1999.

[8] Byung Ryong Kim, Ki Chang Kim, and Yoo Sung Kim. Securing
anonymity in p2p network. InSmart objects and ambient intelligence
(sOc-EUSAI 05). ACM press, 2005.

[9] L. Lamport. Time, clocks, and the ordering of events in a distributed
system.Communications of the ACM, 1978.

[10] Gabriel Montenegro and Claude Castelluccia. Statistically unique
and cryptographically verifiable (sucv) identifiers and addresses. In
Symposium on Network and Distributed Systems (NDSS 2002), pages
87–99. Internet Society, 2002.


