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Abstract. ProVerif over-approximates the attacker’s power to enable
verification of processes under replication. Unfortunately, this results
in ProVerif finding false attacks. This problem is particularly common
in protocols whereby a participant commits to a particular value and
later reveals their value. We introduce a method to reduce false attacks
when analysing secrecy. First, we show how inserting phases into non-
replicated processes enables a more accurate translation to Horn clauses
which avoids some false attacks. Secondly, we generalise our methodology
to processes under replication. Finally, we demonstrate the applicability
of our technique by analysing BlueTooth Simple Pairing. Moreover, we
propose a simplification of this protocol that achieves the same security
goal.

1 Introduction

State space exploration has emerged as a leading verification technique [25] and,
in this context, Abadi & Fournet [2] propose the applied pi calculus – an exten-
sion of the pi calculus – to reason with cryptographic protocols. Unfortunately,
proving security in this context is undecidable [21], due to several sources of
unboundedness, including, messages of arbitrary length and the possibility of an
unbounded number of sessions. Accordingly, state-of-the-art automated reason-
ing techniques focus on sound, but incomplete, methodologies, which may report
false attacks and do not always terminate.

Blanchet [8–10] translates applied pi calculus processes to Horn clauses and
uses resolution of Horn clauses to reason with secrecy and authentication prop-
erties, these results have been implemented in ProVerif [15]. ProVerif has been
successfully used to automatically analyse cryptographic protocols from a variety
of applications domains, including, key exchange [1, 10, 29], electronic voting [20,
5, 4] and trusted computing [18, 19, 28], for example. However, Blanchet’s trans-
lation to Horn clauses over-approximates the attacker’s power and, therefore,
ProVerif may report false attacks; as highlighted by Blanchet [12, §2.2]:

? A long version of this paper and ProVerif source code supporting this paper are
available from http://www.cs.bham.ac.uk/~tpc/projects/falseattacks.
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“false attacks occur typically for protocols that first need to keep data
secret, then publish them later in the protocol. In that situation, the Horn
clause model considers that the attacker can re-inject the secret in the
early part of the run, which is not possible in reality.”

This behaviour is typical of protocols in which participants commit to a value and
later reveal it, such as the BlueTooth Simple Pairing protocol [22, 23], which we
analyse in Section 6. In this paper, we introduce techniques for analysing secrecy
that avoids some false attacks.

1.1 Our contribution in context of existing work

Let us consider the following process, proposed by Allamigeon & Blanchet [3,
§3.2]:

ν n.c(x).c〈n〉.if x = n then c〈s〉 (P1)

Process P1 generates a fresh bound name n, binds a message input to variable
x, outputs the name n, tests if the message bound to x is equal to n, and
outputs the free name s, if the test succeeds. It follows intuitively that an attacker
that does not know s in advance, cannot derive s from Process P1, that is, we
have secrecy({c}, s) : P1. However, the Horn clauses generated by Blanchet’s
translation of P1 include:

attacker(x)⇒ attacker(n)

attacker(n)⇒ attacker(s)

Hence, ProVerif cannot prove secrecy({c}, s) : P1, because the Horn clauses
permit the following false attack: knowledge of an arbitrary term M implies
knowledge of n and knowledge of n implies knowledge of s. This is due to an
over-approximation: the Horn clauses model the process ν n.!c(x).c〈n〉.if x =
n then c〈s〉, rather than P1. It follows that the Horn clauses do not enforce that
a message input must be received before the bound name n is output. Intuitively,
such false attacks can be avoided by ensuring that the translation preserves
temporal order of message inputs and outputs. We shall achieve this objective
using Blanchet, Abadi & Fournet’s notion of phases [13, §8]. Phases, denoted
t :P , ensure which parts of concurrent processes are active at a particular time.

Inserting phases into a process can stop false attack, e.g., we can add a phase
into process P1:

0 :ν n.c(x).1:c〈n〉.if x = n then c〈s〉 (P2)

The semantics of phases ensure that P2 is a sound approximation of P1. How-
ever, the Horn clauses generated by Blanchet’s translation of P2 to Horn clauses
are more precise:

attacker(x)⇒ attacker′(x)

attacker(x)⇒ attacker′(n)

attacker(n)⇒ attacker′(s)
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Indeed, ProVerif can use these Horn clauses to prove secrecy({c}, s) : P2 and,
since P2 is a sound approximation of P1, we have secrecy({c}, s) : P1.

We define a compiler (Section 3) that inserts phases into a restricted class
of processes such that Blanchet’s translation from compiled processes to Horn
clauses enforces order. We prove the soundness of our methodology:

secrecy holds in the original process
iff secrecy holds in the compiled process

This technique is limited to proving secrecy of names which are not under the
scope of a replication and we overcome this limitation using an alternative no-
tion of secrecy.

The class of secrecy properties which can be considered using Blanchet’s def-
inition [10, Section 3.1] is limited, for example, we cannot consider secrecy of
an arbitrary session secret s in the process !ν s.P , that is, we cannot consider
if an instance of ν s.P leaks s. This problem can be overcome by abstraction,
in particular, Blanchet [10, §2.3] proposes the following solution. Extend the set
of function symbols with the binary constructor e and the binary destructor d,
let the set of rewrite rules def (d) = {d(x, e(x, y)) −→ y}, and modify !ν s.P such
that e(s,m) is published at the end of every successful session of ν s.P , where
m is a free name not known by the attacker. It follows that the modified pro-
cess preserves secrecy of m iff !ν s.P preserves secrecy of s, hence, we have a
methodology to consider the secrecy of bound names.

We consider (Section 4) a definition for secrecy of bound names which does
not require abstraction and introduce a new proof technique: given a process P ,
name s, and fresh name s′, we have

secrecy of the bound name s in !ν s.P

iff secrecy of the bound name s′ in ν s′.(P{s′/s}) | !ν s.P )

iff secrecy of the free name s′ in P{s′/s} | !ν s.P

In the context of these results, we describe how our compiler can be applied to
avoid false attacks, in particular, we can prove security results for secrets under
the scope of a replication.

We demonstrate the applicability of our technique by analysing three protocols
(Sections 5 & 6): a toy extension of the Needham-Schroeder protocol in which
one of the participants reveals their nonce at the end of a successful run, the
Bluetooth Simple Pairing [22, 23], and a simplification of the Bluetooth Sim-
ple Pairing that we propose. ProVerif finds false attacks against each of these
protocols, whereas our techniques allow us to prove security.

Pairing protocols typically use a low-entropy, human-verifiable string, de-
rived from a high-entropy shared secret, to authenticate protocol participants
and protect against impersonation attacks. Given that the string is low-entropy,
strings derived from distinct secrets may collide and an attacker that can predict
collisions can launch impersonation attacks. Accordingly, pairing protocols must
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ensure that deriving collisions is computationally expensive. The Bluetooth Sim-
ple Pairing protocol defends against such attacks by making both parties commit
to particular values before the low-entropy string can be calculated; this deprives
an attacker of the opportunity to carry out a brute force attack to find a collision.

We develop theory to enable protocols that are vulnerable to collision attacks
to be accurately modelled in the applied pi calculus. Accordingly, our analysis
of Bluetooth Simple Pairing is more precise than an earlier analysis by Chang
& Shmatikov [17], which ignores collision attacks, and so would incorrectly find
the protocol to be secure even if the steps that stop impersonation attacks were
removed. We also present a simplified version of the Bluetooth Simple Pairing
protocol, which achieves the same secrecy goals with fewer steps, and we use our
analysis method to show that it is secure.

The key contributions of this paper are:

– A framework for avoiding some false attacks when analysing secrecy.
– A definition for secrecy of bound names.
– A method to captured collision attacks.
– A demonstration of how BlueTooth Simple Pairing defends against collision

attacks.
– A simplified pairing protocol.

Hence, our paper advances automated analysis techniques.

2 Background: Applied pi calculus

We adopt Blanchet’s dialect [10] of the applied pi calculus [2, 27], which is suited
to automated reasoning using Blanchet’s ProVerif [15]. The dialect uses the
notion of configurations proposed by Baudet [7] to avoid structural equivalence,
which simplifies security definitions and subsequent proofs.

The calculus assumes an infinite set of names, an infinite set of variables,
and a finite set of function symbols (constructors and destructors), each with an
associated arity. We write f for a constructor, g for a destructor; constructors
are used to build terms whereas destructors are used to manipulate terms in
processes. Terms range over names, variables, and applications of constructors to
terms. Substitutions {M/x} replace the variable x with the term M . Arbitrarily
large substitutions can be written as {M1/x1, . . . ,Mn/xn} and the letters σ and
τ range over substitutions. We write Mσ for the result of applying σ to the
variables of M .

The signature Σ is equipped with a finite set of equations of the form M = N
and we derive an equational theory from this set by reflexive, symmetric and
transitive closure, closure under the application of constructors, closure un-
der substitution of terms for variables, and closure under bijective renaming
of names. We write Σ ` M = N for an equality modulo the equational theory
and Σ ` M 6= N for an inequality modulo the equational theory. (We write
M = N and M 6= N for syntactic equality and inequality, respectively.)
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The semantics of a destructor g of arity l is given by a finite set def (g) of
rewrite rules g(M ′1, . . . ,M

′
l )→M ′, where M ′1, . . . ,M

′
l ,M

′ are terms that contain
only constructors and variables; the variables ofM ′ must be bound inM ′1, . . . ,M

′
l

and variables are subject to renaming. The value g(M1, . . . ,Ml) is defined if and
only if there exists a substitution σ and a rewrite rule g(M ′1, . . . ,M

′
l ) → M ′ in

def (g) such that Mi = M ′iσ for all i ∈ {1, . . . , l}, and in this case g(M1, . . . ,Ml)
is defined as M ′σ.

The grammar for terms and processes is presented in Figure 1, where t is a
non-negative integer representing a global clock. The process let x = g(M1, ...,Ml)
in P else Q tries to evaluate g(M1, ...,Ml); if this succeeds (that is, if g(M1, ...,Ml)
is defined), then x is bound to the result and P is executed, otherwise, Q is
executed. The statement let x = g(M1, . . . ,Ml) in P else Q may be abbrevi-
ated as let x = g(M1, . . . ,Ml) in P , when Q is 0. The syntax does not include
the conditional if M = N then P else Q, but this can be defined as let x =
eq(M,N) in P else Q, where x is a fresh variable, eq is a binary destructor,
and def(eq) = {eq(x, x) → x}; we always include eq in our set of function
symbols. For convenience, we may write if M = N then P else Q for let x =
eq(M,N) in P else Q and if M = N then P for let x = eq(M,N) in P . In Fig-
ure 1, we extend Blanchet’s syntax [10] with Blanchet, Abadi & Fournet’s notion
of phases [13, §8], denoted t :P , which ensures a process t :P is only active during
time t.

Fig. 1 Syntax for terms and processes

M,N ::= terms
x, y, z variables
a, b, c, k, s names
f(M1, . . . ,Mn) constructor application

D ::= g(M1, . . . ,Mn) destructor application

P,Q ::= processes
0 nil

M〈N〉.P output
M(x).P input
P | Q parallel composition
!P replication
ν a.P restriction
let x = D in P else Q term evaluation
t :P phase

The sets of free and bound names, respectively variables, in process P are
denoted by fn(P ) and bn(P ), respectively fv(P ) and bv(P ). We also write fn(M)
and fv(M) for the sets of names and variables in term M . A process P is closed if
it has no free variables. A context C is a process with a hole and we obtain C[P ]
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as the result of filling C’s hole with P . An evaluation context is a context whose
hole is not in the scope of a replication, an input, an output, or a term evaluation.

The operational semantics (Figures 2) for the applied pi-calculus are defined
by reduction (→) on configurations. A configuration C is a pair E,P such that E
is a finite set of names, and P is a finite multiset of pairs of closed process. The
set E contains all the free names in P, and is extended to include any names
introduced during reduction, namely, those names introduced by (E,P ∪ {t :
ν a;P}) → (E ∪ {a′},P ∪ {t : P{a′/a}}). A sequence of reductions, denoted
C1 → C2 → · · · → Cn, is called a trace. We occassionally write →∗ for the
reflexive and transitive closure of →.

Fig. 2 Operational semantics

E,P ∪ {t :0} → E,P (Red Nil)

E,P ∪ {t : !P} → E,P ∪ {t : !P , t :P} (Red Repl)

E,P ∪ {t : (P | Q)})→ E,P ∪ {t :P, t :Q} (Red Par)

E,P ∪ {t :ν a.P} → E ∪ {a′},P ∪ {t :P{a′/a}} (Red Res)
for some name a′ /∈ E

E,P ∪ {t :N〈M〉.P , t :N(x).Q} → E,P ∪ {t :P, t :Q{M/x}} (Red I/O)

E,P ∪ {t : let x = D in L} → E,P ∪ {t :P{M/x}} (Red Destr 1)
if there exists M such that D →M

E,P ∪ {t : let x = D in P else Q})→ E,P ∪ {t :Q} (Red Destr 2)
if there is no M such that D →M ′

E,P ∪ {t : t′ :P} → E,P ∪ {t′ :P} (Red Order)
if t < t′

Given a process P in the applied pi-calculus without phases and a set of
names Init , the configuration Init , {0:P} will reduce using our semantics in ex-
actly the same way as the configuration Init , {P} using Blanchet’s semantics [10].
We note that Blanchet, Abadi & Fournet [13, §8], who introduce phases, assume
any process without phases is assumed to run in phase zero. In this paper,
we wish to distinguish between processes in phase zero and processes without
phases, so we always make the phases explicit, except in case studies where we
adopt Blanchet, Abadi & Fournet’s convention for brevity.

3 Secrecy of free names

We recall (Definition 1) Blanchet’s formalisation [10] of knowledge derivable from
a trace – that is, a reduction on a configuration – as any names which are output.
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Definition 1. Let T = E0,P0 −→∗ E′,P ′ be a trace, n be a name, and Init be
a finite set of names. We write attacker(Init , n) : T if T contains a reduction
E,P ∪ {t :c〈n〉.P , t :c(x).Q} −→ E,P ∪ {t :P, t :Q{n/x}} for some E,P, P,Q, x, t
and c ∈ Init.

It follows naturally that a configuration preserves the secrecy of a name if no
(adversarial) process added to the configuration can generate a trace which per-
mits the name to be derived. We recall (Definition 2) Blanchet’s definition [10]
for secrecy of free names.

Definition 2. Let C = E,P be a configuration, n be a name and Init be a finite
set of names, where fn(P) ⊆ E. We write secrecy(Init , n) : C if for all processes
Q such that fn(Q) ⊆ Init there is no trace T = E∪Init∪fn(n),P∪{Q} −→∗ E′,P ′
such that attacker(Init , n) : T for some E′ and P ′.

Let P be a closed process, n be a name, and Init be a finite set of names. We
write secrecy(Init , n) : P if secrecy(Init , n) : fn(P ), {P}.

Definition 2 facilitates the analysis of secrecy when the secret is a free name and
Section 4 proposes a definition which supposes the secret is bound.

As discussed in Section 1.1, we encounter false attacks when analysing secrecy
of free names and we overcome this problem in the remainder of this section.

3.1 Our compiler: Phases improve Horn clause generation

As demonstrated in Section 1.1, false attacks can be avoided by inserting phases
into processes. Formally, we insert phases using function δ:

Definition 3. Given a set of names Init and a process, we define δ as follows:

δ(Init , P ) = {P} ∪ {C[1 :M(x).P ′] : P = C[M(x).P ′]}
∪ {C[1 :M〈N〉.P ′] : P = C[M〈N〉.P ′] ∧ fn(M) ∩ Init = ∅}

Function δ outputs a set of processes representing all ways of inserting a phase
into P such that the phase appears immediately before an input or an output
on a private channel1.

The insertion of one phase does not generally result in a sound abstraction.
For instance, process P2 | 0: !P1 is not a sound approximation of 0 :P1 | 0: !P1,
because the phase in P2 prevents the instance of n generated by P2 being input
by 0:P1. This problem can be overcome by ensuring that all inputs and outputs
are available in either phase 0 or phase 1, which can be achieved using our
compiler (Definition 4). For simplicity, we restrict our compiler to multisets of
processes P = {0:L, 0: !L1, . . . , 0: !Lm}, where L,L1, . . . , Lm are linear processes
(Figure 3) and ProVerif discovers false attacks arising from process L. This is
sufficient to avoid the false attacks discovered in the examples in this paper.

1 Outputs on public channels can be received by the environment in phase 0 and
replayed in phase 1, therefore function δ does not insert phases immediately before
outputs on public channels.
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Fig. 3 Syntax for linear processes

L ::= linear processes
0 nil

M〈N〉.L output
M(x).L input
ν a.L restriction
let x = g(M1, . . . ,Mn) in L else 0 destructor application

Definition 4. Given a set of names Init and a multiset of process P = {0 :
L, 0: !L1, . . . , 0: !Lm}, we define ∆ as follows:

∆(Init ,P) =

{P} ∪ Q
∣∣∣∣∣∣ P ∈ δ(Init , 0:L) ∧Q =

⋃
1≤i≤m

δ(Init , 0: !Li)


The compiler tries to avoid false attacks by inserting a phase into process L (in
a different place for each member of the set produced by ∆). To ensure that all
of the original reductions are still possible, our compiler also generates a copy of
every other process with a phase in every necessary position.

3.2 Automated reasoning without false attacks

Our compiler is designed such that Blanchet’s translation from compiled pro-
cesses to Horn clauses ensures that the clauses abide by an ordering, thereby
avoiding the false attacks described in Section 1.1, whilst preserving secrecy:

Theorem 1. Given a name s, sets of names E and Init and a multiset of
processes P = {0 :L, 0: !L1, . . . , 0: !Lm}, such that s /∈

⋃
1≤i≤n(fn(Li) ∪ bn(Li))

and fn(P) ⊆ E, we have for all Q ∈ ∆(Init ,P) that:

secrecy(Init , s) : E,P ⇔ secrecy(Init , s) : E,Q

The proof of Theorem 1 appears in the long version of this paper. We demon-
strate an application of Theorem 1 with reference to processes P1 and P2:

Example 1. Let C = 0 : ν n.c(x). and witness that 0 : P1 = C[c〈n〉.if x =
n then c〈s〉] and P2 = C[1 : c〈n〉.if x = n then c〈s〉], i.e., {P2} ∈ ∆({c}, {P1}).
We have secrecy({c}, s) : {c, s}, {0 : P1} ⇔ secrecy({c}, s) : {c, s}, {P2} by The-
orem 1, hence, secrecy({c}, s) : (0 : P1) ⇔ secrecy({c}, s) : P2 by Definition 2.
Moreover, since ProVerif can prove secrecy({c}, s) : P2, we have the desired
result, namely secrecy({c}, s) : (0 : P1).

4 Secrecy of bound names

We adapt the notion of knowledge derivable from a trace (Definition 1) to con-
sider names which are bound by the trace’s initial configuration.
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Definition 5. Let T = E0,P0 −→∗ E1,P1 be a trace, n be a name, and Init be

a finite set of names. We write ̂attacker(Init , n) : T if T contains the following
reductions

E,P ∪ {t :ν n.P} −→ E ∪ {n′},P ∪ {t :P{n′
/n}}

−→∗ E′,P ′ ∪ {s :c〈n′〉.P ′, s :c(x).Q′}
−→ E′,P ′ ∪ {s :P ′, s :Q′{n′

/x}}

where c ∈ Init and some E,E′,P,P ′, P, P ′, Q′, n′, x, s and t.

Intuitively, a trace T satisfies ̂attacker(Init , n) : T if n is bound by the trace’s
initial configuration, n is renamed to n′ and, subsequently, n′ is outputted.

It follows naturally from Definition 5 that a configuration preserves secrecy of
a bound name if no (adversarial) process added to the configuration can generate
a trace which permits the name to be derived.

Definition 6. Let C = E,P be a configuration, n be a name and Init be a set of
names, where fn(P) ⊆ E. We write ̂secrecy(Init , n) : C if for all processes Q such
that fn(Q) ⊆ Init and n 6∈ bn(Q), there is no trace T = E ∪ Init ,P ∪ {Q} −→∗

E′,P ′ such that ̂attacker(Init , n) : T for some E′ and P ′.
Let P be a closed process, n be a name and Init be a finite set of names,

where n ∈ bn(P ). We write ̂secrecy(Init , n) : P if ̂secrecy(Init , n) : fn(P ), {P}.

We remark that ̂secrecy(Init , n) : P guarantees secrecy of every bound name n in
P . It follows that ̂secrecy(Init , n) : (s :ν n.Q | t :ν n.R) implies ̂secrecy(Init , n) :
(s :ν n.Q | t :ν m.(R{m/n}) ∧ ̂secrecy(Init ,m) : (s :ν n.Q | t :ν m.(R{m/n})), for
example.

Secrecy of bound names is not new. ProVerif can already check the secrecy
of bound names, however, the corresponding theoretical definition has not been
published. (Blanchet [11] has confirmed that Definition 6 corresponds to the se-
crecy of bound names notion used by ProVerif.) In addition, Ryan & Smyth [27,
§3.1] propose a definition for secrecy of bound names in the applied pi calcu-
lus, however, their definition is restricted to bound names which do not appear
under the scope of replication and we do not impose such a restriction. The
false attacks we encounter when analysing secrecy of free names similarly oc-
cur when analysing secrecy of bound names, for instance, ProVerif cannot prove
̂secrecy({c}, s) : {c}, {0 : !ν s.P1}. In the remainder of this section we overcome

this problem.

4.1 A proof technique for secrecy of bound names

It follows from our semantics and the definition of bound secrecy that: if t : !ν n.P
does not preserve the secrecy of n, then there exists an instance of ν n.P that
leaks n, when running in parallel with !ν n.P . We now show that it is sufficient to
rename n with some fresh name m in an instance of ν n.P and consider secrecy
of the m in t :ν m.(P{m/n}) | !ν n.P ).
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Theorem 2. Given a name s, sets of names E and Init, process P and multiset
of processes P such that s 6∈ bn(P ) ∪ bn(P) and fn(P) ∪ (fn(P ) \ {s}) ⊆ E, we
have, for all fresh names s′, that:

̂secrecy(Init , s) : E,P ∪ {t : !ν s.P} ⇐⇒
̂secrecy(Init , s′) : E,P ∪ {t : !ν s.P , t :ν s′.(P{s′/s})}

The proof of Theorem 1 appears in the long version of this paper.

4.2 Secrecy of bound and free names coincide

Secrecy of bound and free names coincide when the secret is not under replica-
tion.

Proposition 1. Given a name s, sets of names E and Init, process P and
multiset of processes P such that s 6∈ bn(P ) ∪ bn(P) ∪ fn(P) ∪ Init ∪ E and
fn(P) ∪ (fn(P ) \ {s}) ⊆ E, we have:

̂secrecy(Init , s) : E,P ∪ {t :ν s.P} ⇐⇒ secrecy(Init , s) : E ∪ {s},P ∪ {t :P}

Proof sketch. We note that E,P ∪ {t :ν s.P} −→ E ∪ {s′},P ∪ {t :P{s′/s}}, for a
fresh name s′ and that secrecy(Init , s) : E ∪ {s},P ∪ {t :P} iff secrecy(Init , s′) :
E∪{s′},P∪{t :P{s′/s}}. Therefore, given a trace that causes free secrecy to fail
to hold for the R.H.S we can add the new name declaration to produce a trace
that causes secrecy to fail for the L.H.S. Conversely, given a trace that causes
secrecy to fail for the L.H.S., removing the new name declaration will give us a
trace that causes secrecy to fail for the R.H.S.

A similar equivalence does not hold when the secret is under replication, as the
following example demonstrates:

Example 2. For instance, suppose P = a〈s〉 | a(x).a(y).if x = y then c〈s〉 and
Init = {c}, we have ̂secrecy(Init , s) : (0 : !ν s.P ) but not secrecy(Init , s) : (0 : !P ),
since:

E, {0: !P , 0:c(z)} −→−→ E, {0: !P , 0:P, 0:P, 0:c(z)} by (Red Repl)
−→−→ E, {0: !P , 0:a〈s〉, 0:a〈s〉, Q,Q, 0:c(z)} by (Red Par)
−→−→ E,P ∪ {0: if s = s then c〈s〉, 0:c(z)} by (Red I/O)
−→ E,P ∪ {0:c〈s〉, 0:c(z)} by (Red Destr 1)
−→ E,P ∪ {0:0, 0:0{s/z}} by (Red I/O)

where E = {a, c, s}, Q = 0:a(x).a(y).if x = y then c〈s〉 and P = {0: !P , 0, 0, Q}.

4.3 Automated reasoning without false attacks

The following corollary allows us to reduce the false attacks encountered when
analysing secrecy of bound names.
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Corollary 1. Given a name s, sets of names E and Init, and a multiset of pro-
cesses P = {0: !ν s.L, 0: !L1, . . . , 0: !Lm}, such that s /∈ bn(L)∪

⋃
1≤i≤n(fn(Li)∪

bn(Li)) and fn(P) ⊆ E, we have for all fresh names s′ and Q ∈ ∆(Init ,P ∪
{L{s′/s}}) that:

̂secrecy(Init , s) : E,P ⇔ secrecy(Init , s′) : E ∪ {s′},Q

Proof. We have:

̂secrecy(Init , s) : E,P
⇔ ̂secrecy(Init , s′) : E, {0:ν s′.(L{s′/s})} ∪ P by Theorem 2

⇔ secrecy(Init , s′) : E ∪ {s′}, {0:L{s′/s}} ∪ P by Proposition 1
⇔ secrecy(Init , s′) : E ∪ {s′},Q by Theorem 1

We demonstrate an application of Corollary 1 by evaluating ̂secrecy({c}, s) :
{c}, {!ν s.P1}:

Example 3. Witness that ν s.P1 = C[c(x).c〈n〉.if x = n then c〈s〉], where C =
ν n. , but there is no other context C, process L and terms M and x such
that ν s.P1 = C[M(x).L]. In addition, there is no context C, process L and
terms M,N such that ν s.P1 = C[M〈N〉.L] ∧ fn(M) ∩ {c} = ∅. It follows that
δ({c}, ν s.0 : P1) = {0 : !ν s.P1, 0 : !ν s.1:c(x).c〈n〉.if x = n then c〈s〉}. Let Q =
δ({c}, 0:ν s.P1) ∪ {P3}, where P3 is defined as follows:

0 :ν n.c(x).1:c〈n〉.if x = n then c〈s′〉 (P3)

Since P1{s′/s} = C[c〈n〉.if x = n then c〈s′〉], where C = ν n.c(x). , we have
P3 ∈ δ(∅, 0 :P1{s′/s}) and it follows that Q ∈ ∆({c}, {0 :P1{s′/s}, 0 : !ν s.P1}).
We have ̂secrecy({c}, s) : {c}, {0 : !ν s.P1} ⇔ secrecy({c}, s′) : {c, s′},Q by
Corollary 1 and, since ProVerif can prove secrecy({c}, s) : Q, we have the desired
result ̂secrecy({c}, s) : {c}, {!ν s.P1}.

5 Case study I: Needham-Schroeder protocol

For our first case study, we compose the Needham-Schroeder protocol [26] with
a symmetric encryption scheme to derive a secure channel.

Needham-Schroeder protocol. The Needham-Schroeder protocol [26] is intended
to generate a session key shared between two participants. We assume the par-
ticipants are Alice and Bob, to prevent Lowe’s man-in-the-middle attack2 [24].
The protocol proceeds as follows. First, Alice generates a nonce and outputs

2 Lowe’s attack works as follows: an attacker engages Alice in a session of the protocol
and impersonates Alice to Bob in a parallel session. The attack can be thwarted
by assuming that Alice will only run the protocol with Bob, rather than any other
principal.
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the nonce encrypted with Bob’s public key. Secondly, Bob decrypts Alice’s ci-
phertext using his private key to recover Alice’s nonce, generates a nonce, and
outputs the pair of nonces encrypted with Alice’s public key. Finally, Alice de-
crypts Bob’s ciphertext using her private key to recover the pair of nonces and
outputs Bob’s nonce encrypted with Bob’s public key. The rationale behind the
protocol is that: since only Bob can recover Alice’s nonce, only he can output the
encrypted pair of nonces, moreover, since only Alice can recover Bob’s nonce,
only she can output his encrypted nonce; it follows that the two nonces are only
known to Alice and Bob.

Symmetric encryption scheme. Symmetric encryption enables a secret to be
shared between two participants. We consider the following symmetric encryp-
tion scheme. Given an identifier, key, and secret as input, the initiator outputs
the identifier paired with the secret encrypted with the key. Upon receipt of such
a pair, the interlocutor uses the key associated with the initiator’s identifier to
decrypt the ciphertext. It follows from our description that the initiator’s secret
can only be known by the key holders.

We compose the Needham-Schroeder protocol and symmetric encryption scheme
to derive a secure channel3. The Needham-Schroeder protocol is used to generate
a pair of nonces and these nonces are used by the symmetric encryption scheme
as follows: Alice’s nonce is used as the identifier and Bob’s nonce is used as
the key. Intuitively, the composition ensures that Alice’s secret is known only to
Alice and Bob, because Bob’s nonce is only known to Alice and Bob.

5.1 Applied pi calculus model

We construct a signature Σ to capture the primitives modelling cryptographic
operators and constants: Σ = {fst, snd, pk, pair, adec, aenc, sdec, senc}, where
fst, snd, pk are unary functions and adec, aenc, sdec, senc are binary functions.
We equip the signature with the following rewrite rules:

{fst(pair(x, y))→ x, snd(pair(x, y))→ y,

adec(x, aenc(pk(x), y))→ y, sdec(x, senc(x, y))→ y}.

Our signature and associated rewrite rules allow us to model: asymmetric en-
cryption, pairing, and symmetric encryption.

We define the participants, Alice and Bob, in our composition of the Needham-
Schroeder protocol with a symmetric encryption scheme (Figure 4). Hence, the
complete composition is modelled by the configuration ENSL,PNSL = {c, kA, kB},
{!ν s.A, !B, !c〈pk(kA)〉, !c〈pk(kB)〉} (which are implicitly assumed to be running
in phase 0).

3 This example was inspired by discussion with Blanchet & Cortier [14]
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Fig. 4 Processes modelling Alice and Bob in the Needham-Schroeder protocol

A = ν nA.
c〈aenc(pk(kB), nA)〉.
c(xciph).
let xpair = adec(kA, xciph) in
let ynonce = fst(xpair) in
if ynonce = nA then
let xnonce = snd(xpair) in
c〈aenc(pk(kB), xnonce)〉.
(∗ end key exchange ∗)
c〈pair(nA, senc(xnonce, s))〉

B = c(yciph).
let ynonce = adec(kB , yciph) in
ν nB .
c〈aenc(pk(kA), pair(ynonce, nB))〉.
c(y′ciph).
let xnonce = adec(kB , y

′
ciph) in

if xnonce = nB then
c(ypair).
let y′nonce = fst(ypair) in
if ynonce = y′nonce then
let y′′ciph = snd(ypair) in
let ysecret = sdec(nB , y

′′
ciph) in 0

5.2 Analysis

We would like to analyse ̂secrecy({c}, s) : ENSL,PNSL using ProVerif. However,
the Horn clauses generated by Blanchet’s translation of PNSL result in Horn
clauses which model the process PNSL with a replication after the name restric-
tion ν nA. Unfortunately, secrecy does not hold in this process, because the
attacker can learn nA during one run of the protocol and simulate Bob during
a second run to learn Alice’s secret s. Indeed, ProVerif finds such an attack.
However, this is a false attack, because the protocol states that Alice should use
a fresh nonce for every session of the protocol. This false attack can be avoided
using our results.

By Corollary 1, to prove ̂secrecy({c}, s) : ENSL,PNSL it is sufficient to prove
secrecy(Init , s′) : E ∪ {s′},Q, where Q ∈ ∆({c},PNSL ∪ {A{s

′
/s}}). Let us con-

struct a suitable Q. By definition of ∆ (Definition 4), we have Q = {L} ∪⋃
P∈PNSL

{!R | R ∈ δ(Init , P )} for some L ∈ δ(∅, A{s′/s}). Since PNSL does
not contain any private channels, for all contexts C, processes L and terms
M and N such that fv(M) ∩ {c} = ∅, we have ν s.A 6= C[M〈N〉.L′], B 6=
C[M〈N〉.L′], c〈pk(kA)〉 6= C[M〈N〉.L′], and c〈pk(kB)〉 6= C[M〈N〉.L′]. More-
over, since c〈pk(kA)〉 and c〈pk(kB)〉 do not contain inputs, we have {!R | R ∈
δ(Init , c〈pk(kA)〉)} = {!c〈pk(kA)〉} and, similarly, {!R | R ∈ δ(Init , c〈pk(kB)〉)} =
{!c〈pk(kB)〉}. The set {!R | R ∈ δ(Init , ν s.A)} contains !ν s.A and a modified
version of !ν s.A, namely, !ν s.A with a phase inserted before the input. The set
{!R | R ∈ δ(Init , B)} contains !B and three modified versions of !B, namely, !B
with a phase before each of the three inputs. We have a concrete definition of⋃

P∈PNSL
{!R | R ∈ δ(Init , P )} and we let L ∈ δ(∅, A{s′/s}) be A{s′/s} with a

phase inserted before the penultimate output. ProVerif can automatically verify
that secrecy(Init , s′) : E ∪ {s′},Q holds (verification takes less than one second
using ProVerif 1.86pl4 on Ubuntu 12.04.3 with 3.60GHz Intel Xeon E5-1620 and
8GB memory).
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6 Case study II: Bluetooth Simple Pairing

The Bluetooth Simple Pairing protocol [22, 23] extends the (elliptic curve) Diffie-
Hellman protocol to provide authenticated key exchange. There are a number
of variations of this protocol, depending on the capabilities of the devices being
paired, here we look at the “Numeric Comparison Protocol” that aims to securely
pair devices that are capable of displaying a short number on a screen, and
receiving an input from the user. The displays of the participants’ devices provide
a low-bandwidth, authenticated “out of band” channel, which is assumed to be
untappable by the attacker. The bandwidth constraint of this out of band channel
makes BlueTooth Pairing non-trivial.

The protocol (Figure 5) proceeds as follows. Alice and Bob establish a Diffie-
Hellman key (Steps 1 & 2). Bob generates a nonce and outputs a commitment
to his nonce (Step 3), Alice outputs a nonce (Step 4), and Bob reveals his nonce
(Step 5). Alice and Bob each establish their transcript of values gx, gy, Na, Nb

and check that the first few characters of their transcripts – which we write as
short(gx, gy, Na, Nb) – match using their out of band channel (Step 6). Alice
and Bob can use the Diffie-Hellman key gxy.

Fig. 5 BlueTooth Simple Pairing

Alice Bob

1.
gx

−−−−−−−−−−→
2.

gy

←−−−−−−−−−−
3.

H(gy,gx,Nb)←−−−−−−−−−−
4.

Na−−−−−−−−−−→
5.

Nb←−−−−−−−−−−
6.

transcript⇐=======⇒
Out of Band

The rationale behind the protocol
is that: checking the transcripts on an
authenticated channel guarantees the
key is shared between Alice and Bob.
However, Alice and Bob are only re-
quired to check a few characters of the
transcript, because the authenticated
channel is low-bandwidth, which limits
the number of characters that can be
checked. Formally, we derive the low-
entropy string of the characters that
should be checked by applying func-
tion short to the values gx, gy, Na, Nb.

Collision attacks. String short(gx, gy, Na, Nb) is low-entropy, therefore, unlike
computing a hash on gx, gy, Na, Nb, it is computationally feasible to find a col-
lision. The following example demonstrates collision attacks.

Example 4. Consider a variant of BlueTooth Simple Pairing, without step 3. In
this protocol, the attacker can replace Alice’s message gx with gz and Bob’s
message Nb with Ne such that short(gz, gy, Na, Nb) = short(gx, gz, Na, Ne).
(This would require the attacker to make many guesses for the nonce Ne.) Given
that Alice and Bob would now see the same low-entropy string, the attacker can
impersonate Alice.

Such an attack is prevented in BlueTooth Simple Pairing, by forcing both partic-
ipants to commit to their nonces before they see the other participant’s nonce.
Alice must send her nonce first, and Bob must send a hash of this nonce be-
fore he sees Alice’s Nonce. Alice will check that this nonce matches the hash
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between steps 5 and 6 of the protocol. This ensures that the attacker never has
the opportunity to launch an impersonation attack.

We remark that collision attacks are conceptually different from guessing
attacks against weak secrets [6, 16], which occur when an attacker gets enough
information from a protocol to verify a guess of a value, which is low entropy. The
kind of brute force attack we describe here occurs when an attacker has some
control over the inputs to a high-entropy function and needs to force the short
code based on the output of that function to equal a certain value. In particular,
if an attacker controls one input and knows the values of all the other inputs,
the attacker can generated a large number of possible inputs and, by brute force,
find an input of their own that makes the output of the function produce a value
that matches any short code they wish.

6.1 Applied pi calculus model

Our model assumes that an attacker can generate sufficiently many transcripts
such that distinct transcripts share the same first few characters. That is, given
short(M1,M2,M3,M4), the adversary can compute short(N1, N2, N3, N4) such
that short(M1,M2,M3,M4) = short(N1, N2, N3, N4). Function bruteforce cap-
tures this. Moreover, we supplement short with shortb to enable automated
analysis.

We construct a signature Σ = {g,f,sdec,senc,H,bruteforce,short,shortb},
where g is a unary function, sdec, senc and f are binary functions, H is a ternary
function, and bruteforce, short and shortb take four arguments. Function H

represents a hash function, sdec and senc capture symmetric encryption, i.e.,
def(short) = {sdec(x, senc(x, y))→ y}, and the purpose of the remaining func-
tions is explained below.

Diffie-Hellman key agreement is modelled in the standard fashion [10, §9.1]
using functions f and g and the following equation:

f(x, g(y)) = f(y, g(x))

which allows us to capture (gx)y = (gy)x. (A more general setting is beyond the
scope of [10, §9.1].)

Function shortb is used to model a low-entropy string derived from its input.
For instance, shortb(gx, gy, NA, NB) represents a low-entropy string derived from
terms gx, gy, NA, and NB . To capture collision attacks, function shortb is not
used directly (that is, we do not use shortb in processes), instead, destructor
short is used and we map occurrences of short to shortb using the following
rewrite rule:

short(w, x, y, z)→ shortb(w, x, y, z)

Moreover, we add the following rewrite rules to capture collisions:

short(w, x, y, bruteforce(w, x, y, shortb(ŵ, x̂, ŷ, ẑ)))→ shortb(ŵ, x̂, ŷ, ẑ)
short(w, x, bruteforce(w, x, z, shortb(ŵ, x̂, ŷ, ẑ)), z) → shortb(ŵ, x̂, ŷ, ẑ)
short(w, bruteforce(w, y, z, shortb(ŵ, x̂, ŷ, ẑ)), y, z) → shortb(ŵ, x̂, ŷ, ẑ)
short(bruteforce(x, y, z, shortb(ŵ, x̂, ŷ, ẑ)), x, y, z) → shortb(ŵ, x̂, ŷ, ẑ)
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It follows from our rewrite rules that

short(M1,M2,M3,M4)→ shortb(M1,M2,M3,M4)

and

short(N1, N2, N3, bruteforce(N1, N2, N3, shortb(M1,M2,M3,M4)))

→ shortb(M1,M2,M3,M4))

i.e., terms short(M1,M2,M3,M4) and short(N1, N2, N3, bruteforce(N1, N2, N3,
shortb(M1,M2,M3,M4))) collide.

The ProVerif source of this, and all our other examples, are available from the
following URL: http://www.cs.bham.ac.uk/~tpc/projects/falseattacks.

6.2 Analysis

We analyse this protocol by adding in the exchange of a value at the end of the
protocol using the key gxy and testing for the secrecy of this value. Running our
model in ProVerif we find that it results in a false attack, due to the commitment
problem that was discussed above. The tool suggests that the attacker can send
a dummy commitment value and then observe nonces Na and Nb. The attacker
can then use a brute forced value based on Nb and start the protocol again with
a commitment to this new brute forced value, however, in this second run of the
protocol Bob would be using a different Nb value and so the attack is a false
one.

Applying Theorem 1 to transform the BlueTooth Protocol results in a model
(available from the aforementioned URL) for which ProVerif can verify that the
secrecy of seckey in less than a second, and so Theorem 1 then tells us that,
in spite of the false attack, the original protocol is also secure. If we remove
the check of the commitment sent in step 3 of the protocol, then ProVerif finds
the attack in which the attacker performs a man in the middle attack using the
bruteforce function to find a value which matches the short code sent between
Alice and Bob.

6.3 Case study III: the Simplified Simple Pairing Protocol

Our final case study proposes a simplified version of the Bluetooth Simple Pair-
ing protocol (Figure 6). Our new protocol merges the tasks of the Diffie-Hellman
exponents and the nonces. The out of band channel is used for confirmations of
a short code based on the Diffie-Hellman key. We note that in the specification
of the Bluetooth Simple Pairing protocol [23] the Diffie-Hellman steps of the
protocol are presented as a method of stopping eavesdropping attacks, and the
steps using the nonce values are presented quite separately as a method of stop-
ping active attacks; the contribution of our protocol is to show that these steps
can be merged. We also note that in the Bluetooth Simple Pairing protocol the
channel is protected by the entropy of the secret Diffie-Hellman values and the
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nonces, whereas in our new protocol it is just protected by the entropy of the
secret Diffie-Hellman values. Therefore, for our protocol to be secure, the secret
Diffie-Hellman values must be high-entropy and fresh; this is not currently an
explicit requirement stated in the Bluetooth specification.

Fig. 6 SSP: Simplified Simple Pairing

Alice Bob

1.
Hash(gx)−−−−−−−−−−−→

2.
gy←−−−−−−−−−−

3.
gx−−−−−−−−−−→

Verify 3.gx vs. 1.Hash(gx)

4.
short(gxy)⇐=======⇒

Out of Band

Verify 4.short(gxy) vs. gxy Verify 4.short(gxy) vs. gxy

5.
{seckey}gxy

−−−−−−−−−→

Our new protocol starts with Alice sending a commitment to a particu-
lar Diffie-Hellman exponent. Bob then sends his exponent and Alice replies by
sending her’s. Bob must check that the exponent he receives matches the com-
mitment to avoid the brute force attack described above. Alice and Bob then
compare the transcript of the key on their out of bound channel. The nonces used
in the Bluetooth Simple Pairing protocol are no longer needed, as the freshness
guarantees are now provided by the values x and y.

A brute force attack may be tried against the short string in this protocol.
To allow this in our model, we adapt the rules for bruteforce and short to work
against Diffie-Hellman exponents. In this case, the short function is applied to
the f function i.e., short(f(s,g(t))) represents the short string generated from
the Diffie-Hellman key f(s,g(t)).

Given g(t) and M, the attacker can derive a term N such that short(f(N,g(t)))
= short(M), and we write this N value as bruteforce(g(t),M) and capture the
desired relation using the following rewrite rules:

short(x)→ shortb(x)
short(f(bruteforce(x, shortb(y)), x))→ shortb(y)
short(y, f(bruteforce(y, shortb(x))))→ shortb(x)

It follows from the above rules that given g(t) and f(s,g(t)), the attacker can
derive bruteforce(g(t),short(f(s,g(t)))) such that short(f(bruteforce(g(t),

short(f(s,g(t)))),g(t))) = short(f(s,g(t))), thereby modelling a brute force
attack against the Diffie-Hellman exponents.

Analysing this scheme using ProVerif results in the discovery of a false attack,
whereas Theorem 1 allows us to verify the secrecy of seckey.
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7 Conclusion

We have shown how false atacks can be avoided when analysing secrecy with
ProVerif. Our method works by inserting phases into processes such that they
enforce an ordering on Horn clauses. We demonstrate the applicability of our
methodology by analysing BlueTooth Pairing. This case study leads use to de-
velop theory to enable the analysis of protocols that are vulnerable to imper-
sonation attacks. Finally, we show that BlueTooth Pairing can be simplified and
show that the simplified scheme satisfies the same secrecy objectives.
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