
More is Less: Extra Features in Contactless Payments Break Security

George Pavlides
Surrey Centre for Cyber Security, University of Surrey

Anna Clee
University of Birmingham

Ioana Boureanu
Surrey Centre for Cyber Security, University of Surrey

Tom Chothia
University of Birmingham

Abstract
The EMV contactless payment system has many indepen-

dent parties: payment providers, terminal companies, smart-
phone companies, banks and regulators. EMVCo publishes
a 15 book specification that these companies use to operate
together. However, many of these parties have independently
added additional features, such as Square restricting offline
readers to phone transactions only, Apple, Google and Sam-
sung implementing transit modes and Visa and Mastercard
complying with regional regulations on high value contact-
less payments. We investigate these features, and find that
these parties have been independently retrofitting and over-
loading the core EMV specification. Subtle interactions and
mismatches between the different companies’ additions lead
to a range of vulnerabilities, making it possible to bypass
restrictions to smartphone only payments, make unauthenti-
cated high value transactions offline, and use a cloned card
to make a £25000 transaction offline. To find fixes, we build
formal models of the EMV protocol with the new features we
investigated and test different possible solutions. We have en-
gaged with EMV stakeholders and worked with the company
Square to implement these fixes.

1 Introduction

No other payment network comes near the scale or processing
ability of EMV1. Its standardisation body, EMVCo, has
issued EMV specifications stretching across 15 books2. In
the last three years the market of payment readers doubled
in size to $33.5 billion3 with providers such as Square and
SumUp creating new, portable EMV terminals for the general
public. EMV companies have added a range of new features,
full details of which are only found in private, proprietary
documents available only to those with operating licences, if
at all. Recent attacks, reverse-engineering work and formal
analyses (e.g., [40, 42, 44, 45, 52]) of EMV uncovered some
details of these closed EMV specifications, and show that, as
features are added, the number of attack vectors increases.

We look at how the existing EMV framework has been
used to allow for new features that are not fully in the EMV
specifications, but rather retroactively fitted in or overloaded.
By looking at an offline terminal, we are also able to distin-
guish between checks made by the terminal and the backend.
Through testing to understand their behaviour, building for-
mal models to include this found behaviour and checking
how these extra features interact with one another, we find
numerous attacks and flaws caused by these extra features.

Extra Features: Cardholder verification methods, Tran-
sit, Tap and PIN, and Offline Readers Mobile-phone pay-
ments have replaced PIN authentication with a Consumer
Device Cardholder Verification Method (CDCVM) that uses
a fingerprint or faceID. Visa define their implementation in
the EMV specification, with a flag in the protocol that indi-
cates if CDCVM has been performed. Mastercard does not
include details of their implementation in the EVM specifica-
tion. Past work found that Mastercard checked the CDCVM
status using an undocumented proprietary field in the proto-
col [52]. We find that this is a backend check by Mastercard,
and hence this security check is absent for offline terminals,
which contributes to our attacks.

Transit mode payments have been designed by Apple,
Google and Samsung as a fast way to pay low values on
transport systems without the delay of unlocking a phone.
How different phones detect transit readers is not publicly
documented. Past work found that Apple use a system called
Apple Enhanced Contactless Polling [52]. We look at how
this feature is implemented on GooglePay and find that, for
Visa, it looks for a field in the Terminal Transaction Quali-
fiers (TTQ) that indicates that the terminal supports “offline
authentication for online authorizations”. The EMV spec-
ification defines this as a general flag that can be used by
any reader that may go offline. We find that some Square
shop terminals use this flag as defined in the specification. So
Google’s decision to overload the meaning of this field as a
way to detect transit readers means that GooglePay can be
used on offline Square readers without any customer authenti-
cation, bypassing the need to unlock the screen.

Regulators in certain countries, such as the UK Payment
Services4 require that cards are inserted into the terminal for
PIN verification. Meanwhile, in most of the EU, “Tap-and-
PIN” allows contactless plastic cards to use a PIN. The EMV
specification does not explain how “Tap-and-PIN” and “non-
Tap-and-PIN” differ. We uncover how Visa and Mastercard
have implemented these regulations, finding that Mastercard
uses an undocumented, backend check, and that it is possible
to bypass these regulations on Visa, performing a Tap-and-
PIN transaction with a non Tap-and-PIN card.

Offline capable terminals can accept EMV payments when
not connected to the Internet, and later, when the terminal
reconnects, the payment information is sent to the bank for
approval. Due to different business rules in different coun-
tries, whether plastic cards are allowed in contactless offline
transactions varies. For the US Square Terminal this is al-
lowed 5, but in the UK only mobile wallets are allowed during
offline transactions. This might help reduce fraud because a
mobile wallet can perform CDCVM, authenticating the user.
We investigate how Square restricts terminals to mobile wal-
lets, and find that this is based on detecting the presence of
the proprietary Value Added Services (VAS) loyalty card
system, which is implemented on smart phones. We show
that this can be bypassed to get plastic cards accepted offline,
by replaying a phone’s response to VAS. Combined with the
undocumented way in which Mastercard checks for CDCVM,
this makes it possible to perform an over-the-limit (OTL) at-
tack against offline Mastercard, which is rejected later when
the terminal goes online (after a thief may have left a shop
with their fraudulent purchase).

The above features and regulations are not considered in
the EMV specifications. By relying on retrofitting and over-
loading for accommodating features and regulations, EMV
stakeholders open new attack vectors without understanding
the overall effect on the whole system. We look at a handful
of these extra features, and find numerous attacks, showing
this is a systemic oversight. The use of ad-hoc, proprietary ex-
tensions means that EMV loses the security it gained through
carefully designing the protocols in the core specification.

We proposed fixes for the attacks we found by considering
all the features from the different companies together, which
we did using a formal model. The use of formal models,
checked with the Tamarin prover, gives us some confidence
that we have avoided the kind of design mistakes we found in
the features. Building formal models forces us to write a rule
for every message, which ensures that we have considered
how every field in every message is processed. While we did
not discover the attacks presented here as a result of running
the Tamarin prover, we did spot many of the attacks while
building the formal models due to the rigorous, complete
consideration of the protocol that this requires. There are no
public details on the backend checks made on EMV transac-
tions, so we used the formal model to help us reverse engineer
the backend system by testing different possible checks the

backend could make and seeing what is consistent with the
behaviour we observed from terminals. Square has now
implemented our recommended fixes.

Contributions:
• We investigate and explain how a range of out of specifi-

cation EMV features work.
• We find a range of attacks against these features.
• We show that these flaws are a systemic issue often due

to interactions between undocumented ad-hoc features.
• We suggest and formally verify protocol fixes, some of

these have already been implemented by Square.

2 Background & Related Work

We now present main EMV protocols and features, with em-
phasis on online vs. offline EMV, and customer validation.
Appendix G contains a list of EMV acronyms.

2.1 EMV Parties & Online/Offline Executions

The EMV protocols are payment protocols designed to secure
and authenticate the transaction, but also to keep everything
interoperable, allowing for many variations of set up. There
are four main parties: payment devices which can be tra-
ditional bank-cards, that we refer to as plastic cards, and
mobile devices which are phones, smartwatches, etc. running
the protocol via a mobile-payment app such as ApplePay,
GooglePay or SamsungPay with a card or several registered
on this app. We will refer to these generally as the payment
device. An essential difference between the two types is that
mobile devices have Consumer Device Cardholder Verifica-
tion Method(s) (CDCVM) (e.g., via a PIN, a fingerprint or
FaceID verified by the device), whereas this verification of
cardholders cannot be done by plastic cards themselves, so
instead can be performed by the next party, the reader. Points
of Sale (PoS), referred to as (EMV) readers or terminals can
perform authentication of the cardholder by requesting a PIN
be inputted to the reader. Then, there are the banks that issue
the cards to be used via the payment device; we refer to these
simply as the Bank6. Finally, there are the payment networks,
represented by the card providers, e.g., Visa, Mastercard.

Every card has cryptographic data assigned to it upon is-
suance, which proves it is a valid card from its Bank. This
includes a symmetric key KM shared with the Bank, a private-
public key pair and a bank-signed digital certificate on the
public key. This public key is retrieved by the terminal dur-
ing the protocol execution, whichever the protocol type is
(Visa, Mastercard, etc.). During the protocol, the payment de-
vice packages into what is called an Application Cryptogram
(AC) its view of the transaction. This includes a field called
the Issuer Application Data (IAD), which has proprietary
descriptions consumed by the bank that issued the card and
the payment network. The IAD is also a backend tool that de-

scribes7 which type of payment device did the transaction, in
which conditions (e.g., transit), if CDCVM was used, etc. The
Application Cryptogram (AC) is a MAC that only the bank
can verify, and is used when the bank determines whether to
approve a transaction. The terminal can be either: online (i.e.,
connected to the Internet), offline (i.e., disconnected from the
Internet), or –as some PoS onboard transport vehicles would
be – offline for online (i.e., likely having an Internet con-
nection, but performing a transaction as if they were offline
just in case they lose connectivity). During the protocol, the
terminal sends to the payment device its online/offline nature.

Offline PoS. If the terminal is offline, elements of the
transaction as seen by the payment device are packaged by
the payment device into the Signed Dynamic Application
Data (SDAD) – a signature by the card which the terminal
can verify. The payment device will send the SDAD and
the AC to the terminal for both the Visa and the Mastercard
protocols. The offline terminal must verify this SDAD and
other data sent by the payment device during the protocol
(e.g., expiry date) and accept or decline the payment based
on this information. We describe how the certificates and
SDAD are decoded in the appendix, and give examples of
their contents. This verification step ensures that the payment
device’s impression of the protocol’s execution (e.g., a nonce
exchange) is in line with that of the terminal. If the terminal
is offline, the protocol finishes between the payment device
and the terminal at this point; if the terminal’s checks are
successful, the cardholder leaves the merchant’s premises
and be deemed to have paid for goods or services.

When the offline terminal reconnects to the Internet (which
may be days after the transactions), the terminal sends the
ACs of all offline transactions to the corresponding banks,
accompanied by data describing the transaction. The bank
(and the payment networks) do checks on the AC and the
terminal information, and examine whether there are funds in
the bank account of the card or fraudulent activity linked to
it, before authorising/declining the payment.

Online PoS. If the terminal is online, for Visa, the payment
device will not send it the SDAD, but only the AC. For both
Mastercard and Visa, the AC will be forwarded by the terminal
to the Bank in real time; the online terminal will authorise the
payment if the bank and payment network approved it.

“Offline for Online” PoS. Readers with a transport Mer-
chant Category Code (MCC) advertise to be “offline for on-
line”. In this mode, readers may be connected to the Internet
or not. The payment device sends to these readers the SDAD
and the AC, but the terminal is not mandated to check the
SDAD, if it is online and can verify the AC with the backend.
Depending on the connection and configuration of the reader,
from here on, it may behave like an online terminal or like an
offline reader: i.e., forward the AC to the Bank in real time or
not, receive payment-authorisation results from the bank or
make its own decisions w.r.t. payment authorisation.

2.2 On-Device Customer Validation (CDCVM)

EMV transactions with contactless cards remain entirely con-
tactless (needing no cardholder input) given the following
spending limits are not exceeded: a limit per transaction (e.g.,
£100 in the UK) and/or cumulative limits (e.g. £200). If
either is exceeded, then the transaction generally requires
Cardholder Verification (CV) mechanism.

The terminal gets from the payment device information
about the CV Method(s) (CVM(s)) it supports, as well as
the conditions in which these rules apply. For plastic cards,
the CVM is generally such that the terminal requests the
card’s Personal Identification Number (PIN) be input into the
terminal; for online readers, this PIN is sent inside the AC
to the bank for verification, whereas for offline readers it is
checked against the card’s persistent memory. In contrast to
this, on mobile devices, CV can be done by what is called
Consumer Device Cardholder Verification Method (CDCVM),
e.g., the user’s fingerprint or face is scanned by a mobile app.
So, in a CVM negotiation between the payment device and
the terminal, a contactless payment above the contactless limit
may be accepted by a terminal without the terminal doing any
CV, as the CV was delegated to the payment device.

2.3 The Visa & Mastercard Protocols

Visa’s Protocol. This protocol, with the EMV fields most
relevant to this paper explained, is depicted in Figure 1. First,
the payment device (on behalf of the card) and the terminal
depicted in the figure as the reader, negotiate if they are
to run Visa, Mastercard, etc. via the “SELECT” messages.
Then, the data needed for the transaction is requested by
the payment device in the Processing Options Data Object
List (PDOL) (e.g., amount to pay, a nonce generated by the
terminal denoted UN, etc.). The terminal sends this data in the
Get Processing Options (GPO) message, a field of note in this
is the TTQ. The TTQ informs the payment device whether the
terminal is online, offline or ‘offline for online’ and whether
a Cardholder Verification Method (CVM) is required for this
transaction (e.g., because it is over the contactless limit).

The payment device replies to the GPO message with a
series of EMV fields and data, of which we mention: the
Card Transaction Qualifiers (CTQ) – a field saying how the
payment device can comply with the TTQ requirements (e.g.,
if it did on-device authentication (CDCVM) or not when the
TTQ asked for it); the Application Interchange Profile (AIP) –
a field describing the capability of the payment device (e.g., if
it is capable of on-device authentication or not, which mobile
phones are likely to be, whereas “plastic” cards are not); and a
nonce NC carrying the randomness the payment device adds to
the cryptographic data (i.e., the AC, SDAD) in this particular
execution. Next, the terminal requests data from the payment
device (RECORDS), which includes the certificates of the
card, these are checked by the terminal. The payment device

AIP includes
 “I can/cannot do user
authentication”

TTQ includes
• EMV mode vs DDA mode
 (will contact the bank/no

SDAD vs send me SDAD)

• CV = customer validation
required

• offline for online (I will
contact the bank but send
me SDAD) // transport
readers

CTQ includes

 “CV= customer-validation performable
at PoS”
 or
“CDCVM =on-device authentication
performed”

The CTQ is also inside SDAD.

Bank

IAD includes
◼ Format (plastic, mobile),
◼ Transaction details such as the
 CVR (Card Verification Results),
 which is a copy of CDVCM bits of the
 CTQ.

The IAD is available to the PoS, and to
the banks via the AC.

AC (… IAD), … ATC, MCC, …

MCC =
 “I am a food store”
…
4111 (local commuter
transport) or
4131 (bus lines)

Authorisation …
The ICC = integrate-circuit certificate/ card
certificate includes the AIP

Figure 1: Visa’s PayWave Protocol. (Most-relevant EMV fields in bold face and explained; optional messages in brackets).

sends the requested data including the AC and, if offline or
offline for online, the SDAD too. The AC contains lots of
transaction data to depict the payment device’s view of the
exchange. See Fig. 1 for all that is contained in the AC. Worth
highlighting is the IAD: copies of parts of the CTQ (notably
a field called Card Verification Results (CVR) which says if
the payment device performed on-device authentication or
not) appear in a part of the AC called the IAD, which the
banks should check. We decoded SDADs (see Appendix D),
and found that the SDAD contains the Card Authentication
Related Data (CARD), holding the card’s nonce and a copy
of the CTQ. This should be verified, offline, by the terminal.

Finally, the terminal sends via the secure channel the details
of the transaction to the bank and payment networks (e.g.,
Visa). This includes but is not limited to details of the terminal
e.g., Merchant Location, Merchant Category Code (MCC)
denoting if the terminal is a retail shop or a transport terminal
(e.g., MCC 5732 is for electronics stores, 4111 is for local
transport), etc. for anti-fraud checks and fee charging [56].

Mastercard’s Protocol. We diagrammatically give Master-
card’s protocol, called PayPass, in Figure 8 (in Appendix F,
due to space), detailing particularly the elements most perti-
nent here, and differences from the Visa protocol. Some of
the EMV fields Mastercard has are in common with Visa’s
protocol (e.g., Application File Locator (AFL) – the index of
all the static “records” available on the payment device, the
AIP – the payment device’s capabilities), but these fields are
consumed in a different order to Visa’s protocol. There are
also differences to Visa. For instance, the terminal uses the
AFL to request what are called “Track 2” (the user’s account

information), and the CVM List. The latter is comparable
in purpose to the CTQ in Visa, declaring payment device’s
different CV abilities.

The terminal will pick one of the CVMs advertised by the
payment device and return its choice to the payment device
as the CVM Result. The SDAD in Mastercard contains more
EMV Fields than in Visa: e.g., the SDAD now includes the
full Card Risk Management Data Object List 1 (CDOL1) data
and the AC. For Mastercard, the AIP, which indicates the
payment device’s capabilities, is inside the authenticated Inte-
grated Circuit Card Certificate (ICCc). Mastercard-compliant
readers always check the certificates and the SDAD, and if
these are correct, they send (when online) the payment device-
issued AC, containing the payment device-issued IAD and
its own transaction data to the issuing bank and the payment
network. The bank will verify the AC, and the payment net-
work (e.g, Visa, Mastercard) will verify the IAD. If these are
correct, the payment will be authorised (online).

Transit Mode for Mobile Contactless EMV. “Transit
mode” is a way in which mobile payment devices and applica-
tions (e.g., ApplePay, SamsungPay, GooglePay) can operate
during contactless EMV transactions, without complying to
standard CDCVM rules, in order to increase user-friendliness.
To facilitate usability when passing through a transport barrier,
e.g., in the London Underground, the CDCVM requirement
is bypassed when the mobile payment device identifies it is
transacting with a “transport terminal”. The mobile device
allows a payment without the device being unlocked, and
without the user performing CDCVM validation, i.e., input
their payment app PIN, present their FaceID/fingerprint.

Figure 2: Our Methodology for Offline-EMV Attacks (arrows form a relay-based MiM attack; red arrows carry active-MiM
changes; parts in the dashed box – optional)

2.4 Related Work

Galloway et al. [49] were the first to bypass the contactless-
limit authentication by setting the “CVM required bit” in the
TTQ to 0, and the “CDCVM bit” in the CTQ to 1; this was
done against UK cards. A Galloway-like attack was also
performed on Swiss contactless cards by [42]; business rules
differentiating UK cards from Swiss ones were essential, but
this was not known at the time; Radu et al. [52] realised it
and dubbed the Swiss behaviour “Tap-and-PIN”. We finally
uncover what this in EMV is and how this works.

Yunusov et al. [57] [55] extended the Galloway attack, by
using a compromised terminal, which is out of our scope.
Radu et al. [52] also extended the Galloway attack to make
an iPhone think it is in transit mode and thus incorrectly does
payments without user-authentication. They also described
details of the proprietary IAD. For Mastercard, the reader
also gets an authenticated copy of the IAD inside the SDAD.
For both Visa and Mastercard, the IAD is sent by the payment
device to the terminal in the clear, and the issuer gets the IAD
authenticated inside the AC. So, issuers can reliably check
the IAD for its inner CDCVM data and operation modes
(e.g., if the payment was performed in transit mode or not,
and even if it was done with an ApplePay, a SamsungPay, a
GooglePay, etc.), as well as check it against the MCC and
other transaction data sent by the payment device and the
terminal. This has not occurred in prior CDCVM- or transport-
mode based online attacks by [42, 49, 52]. We find this is still
not the case, even when our attacks modify more EMV data.

Recently, Basin et al. [41] experimented with making an in-
correct Mastercard transaction by altering the card-certificate
validation process on the terminal. An attack we present
against SamsungPay and Square is similar in nature.

There is also a history in the formal analysis of EMV.
Formal Dolev-Yao [47] models of EMV in verification tools
such as ProVerif [43] or Tamarin [51] include [42, 45, 46, 52].
In this work, we enhance the models of [52] in line with the
attacks and countermeasures advanced herein.

3 Threat Model & Attacks’ Methodology

3.1 EMV and Proprietary Regulations
Regulations on Payment Devices and Readers. There are
many restrictions in payment regulations8. Some payment
devices do not work with certain readers or in specific con-
ditions (e.g., SamsungPay on some transport readers). And,
terminals accept specific cards and devices (e.g., no Amex,
no SamsungPay): e.g., Square’s website says that, in Europe,
the Square Terminal works offline, contactless, only with the
mobile-wallets ApplePay and GooglePay, using CDCVM9,
not with plastic cards or other devices/wallets. Retailers can
set a limit for offline payments, of their choice; the Square
Terminal can be set to a maximum of £25,000 offline.

Regulations on Terminals, Banks and the Payment Ser-
vice and networks. EMV enforces transaction limits for
contactless payments without user authentication, varying by
region (e.g., £100 in the UK, C150 in the EU). Implementa-
tion of EMV beyond this limit differs by country. In most of
Europe, PINs can be entered without inserting the card into
the terminal, while in the UK, transactions over these limits
require inserting the card, moving from the contactless to the
contact protocol. More details are in Section 4.2.

3.2 Threat Model, Attacks’ Phases & Victims
We consider, honest payment devices, terminals, banks and
payment networks. Corrupting a payment device or bank is
considered hard and the EMV system provides no protection
against this. While the terminals are built to be tamper-proof
they may be corrupted but this can be traced back to the
owner10. We consider a Dolev-Yao [47], Man-in-the-Middle
(MiM) protocol attacker, which can replay and alter messages,
while controlling the communication between the card and
the terminal, for any possible combination of sessions, but
without performing cryptographic attacks against the signa-
ture/MACing primitives used in the protocols. The attacker

has access to an honest payment device and terminal, and
could also have and use a stolen payment device.

We say a transaction is correct if all EMV requirements
and regulations are observed. An EMV attack is a series
of actions by our attacker that result in an incorrect EMV
transaction being authorised. Working with offline readers,
we say that an offline-EMV attacks has two phases:
1. reader-offline phase – the transaction is incorrect but au-
thorised whilst the reader is offline;
2. online-checks phase – the transaction is incorrect, and it
is also authorised when the reader goes online.
Importantly, both phases of offline-EMV attacks are them-
selves attacks in their own rights, since payment authorisa-
tions take place when they should not.

There are several dimensions to our attacks: i.e., the vic-
tims , the underlying cause (e.g., non-compliance to specifi-
cation, or even flaw in the specification), if it is EMV-wide
or company-specific, etc. All of these are summarised in
Figure 5. There are several such dimensions that charac-
terise ours attacks. One full characterisation, which is also
backed by our formal models (see Sections 5 and 8) is given
by the following three dimensions: 1) breach of regulations
(relating to Tap-and-PIN or offline payments); 2) “free lunch”
nature (when the transaction is accepted offline, and rejected
when the terminal goes online, so the attacker gets a “free
lunch” where they have received goods/services without pay-
ing, leaving the merchant out of pocket); 3) “over-the-limit”
illicit payment, offline or online, (when an un-authorised con-
tactless payment is accepted for any amount, especially over
the contactless limit). Each of our attacks falls in one, two or
all of these categories.

3.3 Our Tools and Methodology

We used a series of well-established RFID and EMV toolk-
its. We used a Proxmark3 RDv411, a programmable toolkit
with EMV/RFID antennas, to: (1) sniff our transactions to
get so-called “EMV traces”, to understand protocols better
(e.g., in Section 6); (2) emulate an EMV reader against a vic-
tim payment device (Section 4 and Section 6). We built and
used Android-based payment device emulators (Section 4
and Section 6). We used both of these, alongside numer-
ous cards (Visa and Mastercard, issued in various countries),
mobile-wallets on phones (various OSs and models of Sam-
sung, Nokia, Apple), readers (SumUp Air 12, SumUp Solo13,
Square Reader14, Square Terminal15 registered in the UK
and in Romania) to do reverse engineering (e.g., Section 4.2,
Section 6, Section 7) and mount attacks (Sections 4 and 6).
Choice of Terminals. The terminals used for each of the
main EMV functionalities investigated are summarised below,
along with the motivation behind choosing them.
Offline functionality: Square Terminal (registered in the UK).
Square is one of the most widely used terminal providers
16 and Square Terminal is the only offline-capable terminal

available in the UK without having a registered company.
Tap-and-PIN functionality: SumUp Air (one registered in Ro-
mania and one in the UK), SumUp Solo (registered in the UK),
Square Reader (registered in the UK) and Square Terminal
(registered in the UK). The aforementioned terminals are man-
ufactured by popular terminal companies and are available
to the general public without having a registered company.
We believe that four readers over two distinct providers and
countries are enough to understand and conclude how the
Tap-and-PIN functionality is enforced.

Much of this work is similarly to [49, 52], on relay-based
MiM. The main difference is that, since we work with offline
readers, some of our MiM have two phases; this is shown
in Figure 2. This figure also shows that, in some attacks
(ATTACK 1-4), we use the full MiM, whereas in others (AT-
TACK 10), we utilise a Host-based Card Emulation (HCE).
A similar figure for comparison for online-EMV attacks, is
given in Figure 7 in the appendix.

Note. In all our attacks, the shop assistant will see our
phone (payment device emulator) paying at a terminal, so it
will all look like an inconspicuous, normal mobile payment.

4 Testing Features Centered on Plastic Cards

In this section, we look at how Square stops offline payments
from plastic cards and how Visa and Mastercard stop some
plastic cards from doing Tap-and-PIN transactions, leading
to 4 attacks. Neither of these features is detailed in the EMV
specification, so our work is informed by experiments and
past work as shown in the mind-map in Figure 3.

4.1 Offline restrictions to smart phones

The Feature: The first functionality we look at is the Square
Terminal’s restriction of offline, contactless transactions to
only work with mobile phones, blocking plastic cards. We
note that, the EMV specification does not define how to
differentiate between plastic and mobile payments.

Our Experiments and Results: To investigate Square
Terminal’s distinction, we captured a trace of a successful
iPhone transaction and a failed plastic card attempt. The failed
transaction revealed the Square Terminal sent a “SELECT
OSE.VAS.01” message instead of the standard “SELECT
2PAY.SYS.DDF01”. We discovered this is part of the VAS
protocol, which we then explored.

Analysis: “Value Added Services17” (VAS), also known as
“Smart Tap18” by Google, is a proprietary protocol for adding
loyalty cards to mobile wallets. Official documentation is
only available under NDA. However, reverse engineering
efforts by Grayson Martin19 and Kormax20, and information
from SpringCard21 and ID TECH22, provide some details.
Using these sources, we describe the protocol, with details in
Appendix C, though it is not central to our research.

EXPERIMENTS: Tests on
the Square Terminal, UK
specifications/firmware,

Section IV.A

RELATED WORK:
VAS details from

github, Section IV.A

NEW CONCEPT SQUARE:
Square Terminal, offline, is
using VAS to detect mobile
applications Section IV.A

RELATED WORK:
Over-the-limit attacks on

Visa
[40]

Section II

ATTACK 3:
Square Terminal wrongly
accepts plastic VISA over

the limit (later rejected
online) Section IV.C

ATTACK 4:
Square Terminal wrongly

accepts plastic MC
over the limit (later rejected

online) Section IV.D

EXPERIMENTS: Square
Terminal, offline, does not

check CTQ in SDAD
Section IV.C

RELATED WORK:
On MC only the IAD

encodes if authentication
(CDCVM) done. [52], Section

II.C.b

EXPERIMENTS: Square
Terminal, offline, does not
check the CVR inside the
IAD for MC Section IV.D

NEW CONCEPT EMV:
For MC: no good way to

check if CDCVM auth has
been done offline, only in
proprietary IAD Section V

EXPERIMENTS: How is it
decided if Tap and PIN is
done or not? Section IV.B

NEW CONCEPT EMV:
MC process Tap-and-PIN

requirement at the
backend Section IV.B

FORMAL MODEL
Section V

ATTACK 1: Square
Terminal wrongly accepts

plastic VISA and MC under
the limit Section IV.A

NEW CONCEPT EMV:
Visa devices encode

Tap-and-PIN requirement
in the CTQ Section IV.B

FIXES FOR OFFLINE
EMV IN GENERAL CASE

Section V.A

Plastic Cards
Results

ATTACK 2: non-Tap-and-PIN
Visa card accepted over the

limit tap-and-PIN Section
IV.B

Figure 3: Mind-map of the Main Results from Sections 4 and 5

The plastic card responded to the Square Terminal’s “SE-
LECT OSE.VAS.01” with an ISO 7816 error, indicating the
service was unavailable, ending the transaction. In success-
ful iPhone transactions, the phone sent its VAS capabilities.
Since the Square Terminal did not consume the data sent in
VAS, and VAS is only supported on smartphones, we specu-
lated it used “VAS SELECT” to identify mobile wallets.

To test this, we recorded a legitimate VAS response from
an iPhone (with a Visa card) and added it to our relay-based
MiM attack in Figure 2: concretely, our card-emulator sent
this VAS reply to the Square Terminal, while we relayed the
rest from the plastic card, leading to our first attack:

ATTACK 1: We can bypass Square’s restriction offline to
only mobile devices, by replaying a recorded VAS response,
then relaying messages from a plastic card.

Discussions: ATTACK 1 succeeds during the “reader-
offline phase”. When the Square Terminal goes online, under-
the-limit (UTL) payments are approved, indicating no addi-
tional checks to prevent plastic card use.

While not particularly dangerous we rate this as a low
impact attack, since plastic cards can make online payments.
However, we note that it breaches Square Terminal intent
to block offline plastic-card transactions in certain regions,
necessary to comply with financial regulations23; so, Square
Terminal does not adhere robustly to regulations that are there
to mitigate the added risk of offline payments, which typically
require user authentication (e.g., CDCVM).

While the past work on reverse engineering VAS helps us

understand and parse the messages, Square’s use of just the
first exchange of VAS messages to detect a smart phone is
novel, as is our attack against this.

4.2 Tap-and-PIN vs Non-Tap-and-PIN Cards

The Feature: Section 2.2 explained that over-the-limit con-
tactless transactions with plastic cards require PIN validation.
However, PIN validation for contactless EMV varies geo-
graphically due to different rules and protocols. In countries
like Spain, France, and Germany, over-the-limit transactions
remain contactless, with the PIN entered without card in-
sertion (“Tap-and-PIN”, as coined by Radu et al [52]). In
the UK and Singapore, over-the-limit transactions require
card insertion and PIN entry, known as contact/chip-and-PIN
(“non-Tap-and-PIN”, as coined by Radu et al [52]).

Our Experiments: We aimed to understand and poten-
tially bypass these geographic restrictions. To carry out the
experiments, we used Tap-and-PIN cards from Romania,
Turkey, Germany and France, and non-Tap-and-PIN cards
from the UK. We also used the terminals mentioned in Sec-
tion 3.3 in online-mode. The reader registered in Romania
does Tap-and-PIN and the readers registered in the UK do not
do Tap-and-PIN. First, we sniffed and analysed EMV traces
produced by combinations of readers and card types.

Results and Analysis for Mastercard Tap-and-PIN: We
found that all Mastercard cards performed Tap-and-PIN with
the Romanian reader, but none did with the UK readers. In-

specting traces showed that the only differences where in
fields unrelated to Tap-and-PIN, which we would expect to be
different between traces (i.e., the nonce, time, AC & SDAD).

From EMV specification, two EMV fields, Terminal Veri-
fication Results (TVR) and Cardholder Verification Method
(CVM) results, could indicate if Tap-and-PIN is required. The
TVR field reflects the terminal’s transaction status, while the
CVM fields shows the verification method used.

Looking at traces, in a Tap-and-PIN transaction, the fact
that a PIN is entered is reflected in the TVR and CVM results.
However, we experimented with these fields and found that
the card does not refuse to complete an over-the-limit transac-
tion, even when the TVR and CVM results indicate no PIN
was entered. So, Mastercard does the checks for Tap-and-PIN
purely at the backend, and not on the card. This will also
be a contributing factor to us being able to mount an offline-
EMV, over-the-limit attack for Mastercard (i.e., ATTACK 4),
discussed later in Section 4.3.

Results and Analysis for Visa Tap-and-PIN: Unlike Mas-
tercard, non-Tap-and-PIN Visa cards would not perform high-
value Tap-and-PIN transactions with the Romanian EMV
reader. Past research suggested non-Tap-and-PIN cards only
do contactless transactions below the limit [48], but we found
this was false: if the “CVM required” flag is set in TTQ, the
cards reply with a 6984 error code (“referenced data reversibly
blocked24”), rather than providing a payment AC.

We then used our online-MiM method (see Figure 7) to
unset the “CVM required” flag. Comparing the traces of the
Tap-and-PIN cards and the non-Tap-and-PIN cards (with this
“CVM required” flag unset), we found a difference in the CTQ
field. The Tap-and-PIN cards set the bit called “Online PIN
required” (Byte 1 Bit 8), while the non-Tap-and-PIN cards
do not. So, we set our relay to clear the “CVM required” bit
inside the TTQ, and also set the “Online PIN required” bit in
the CTQ. In this case, the reader asks for a contactless PIN
from the “non-Tap-and-PIN” card and completes an over-the-
limit transaction as Tap-and-PIN. So, we mount this:

ATTACK 2: For Visa and all online EMV terminals, we can
perform a Tap-and-PIN transaction with a non-Tap-and-PIN
card, by setting “Online PIN required” flag (bit 8 of byte
1) in the CTQ, and unsetting “CVM required” flag (bit 7 in
byte 2) in the TTQ.

Discussions. ATTACK 225 breaks Visa’s security model by
enabling Tap-and-PIN, though requiring the attacker’s knowl-
edge of the PIN makes it less useful. Still, like ATTACK 1, it
violates regulations and bypasses card payment restrictions,
that issuers must abide to in order to do business.

To the best of our knowledge this is the first work to explain
how readers distinguish cards that should and should not do
Tap-and-PIN. Our findings also clarify discrepancies in two
past over-the-limit Visa attacks which were down to lack
of understanding of Tap-and-PIN workings: Yunusov and
Galloway [49] required clearing the ‘CVM required’ flag in

the TTQ (because they were working in the UK with non-
Tap-and-PIN cards), whereas Basin et al. [42] do not need to
clear this bit (because they were working in Switzerland with
a Tap-and-PIN card).

4.3 Offline Over-the-Limit Visa Transactions

The Feature: This is offline mode for Visa, specifically the
transaction/card data Visa includes in the SDADs, such as to
know what attacks can be caught by an offline reader.

Our Experiments & Analysis: We experimented with
combining ATTACKs 1 and 2, and separately with a Tap-and-
PIN capable plastic card, to try to get the Square Terminal to
do an over-the-limit Tap-and-PIN transaction offline, however,
after finishing the exchange of messages, the terminal always
rejected the transaction, without bringing up the PIN interface.
Therefore, we conclude that the Square Terminal has been
programmed to always reject Tap-and-PIN in offline mode.

We tried combining our ATTACK 1 VAS-replay-relay with
the over-the-limit, online attack of Galloway and Yunusov
[49], in order to do unauthenticated high value Visa transac-
tions offline. Galloway and Yunusov concluded that their
TTQ-CTQ-flipping attack only works for Visa online, as of-
fline Visa adds CTQ-date signed inside the SDAD. How-
ever, our investigation of the SDAD (detailed in Appendix D)
shows that the SDAD actually includes a copy of the CTQ that
is included in the Card Authentication Related Data (CARD)
field. So, we experimented, in offline mode, with changing
the CTQ and leaving the CARD field untouched, as follows.

1. Reader-Offline Phase. We set the Square Terminal in
offline-mode and set it up for a high-value transaction. Then,
we run the MiM-relay script between a plastic card and the
Square Terminal updating it to unset the “CVM required" bit
of TTQ (byte 2, bit 7) and set the “CDCVM performed" bit
in CTQ (byte 2, bit 8). This caused the transaction to appear
as if it was verified on a mobile device, and makes the offline-
mode Square Terminal accept the high-value payments with
plastic cards, without any sort of verification26.

2. Online-Checks Phase. When the Square Terminal goes
online, the payment is rejected and the transaction is recorded
as declined on the Square server-side log.

ATTACK 3: For Visa, we can make the Square Terminal
accept a plastic contactless card offline for over-the-limit
transactions, by performing ATTACK 1 where its relay is
enhanced to a MiM flipping bits in the “CVM required” flag
in the TTQ (byte 2, bit 7) and “CDCVM performed” flag
in the CTQ (byte 2, bit 8).

Discussions. We consider this a “free-lunch attack” be-
cause it allows an attacker to leave with high-value goods
before the merchant connects to the Internet to see the rejec-
tion27. The Square system offers no way for the merchant
to recover the lost money or follow up with the cardholder.
Although the merchant might not be technically liable, re-

claiming the money is difficult.
ATTACK 3 combines the Galloway and Yunusov over-the-

limit attack [49] with our ATTACK 1. The key novelty is that,
unlike Galloway and Yunusov’s online attack, ATTACK 3 is
offline, and so bypasses online checks. This attack is most
likely due to an implementation error on Square Terminals:
not checking that the CTQ and its copy in the CARD field are
equal, given the CARD field is signed in the SDAD.

4.4 Offline Over-the-Limit MC Transactions
Our analysis in Section 4.2 showed that, for over-the-limit
transactions with Mastercard, Tap-and-PIN checks are han-
dled online by the backend system. Unlike Visa, Mastercard’s
protections are enforced during this backend process, making
it difficult for an offline terminal to perform these checks.

To test this, we used our VAS-replay-relay technique (AT-
TACK 1) to relay an over-the-limit transaction from the offline
Square Terminal to a plastic Mastercard, which was accepted
offline. This indicates the offline Square Terminal does not
check the CVR in the IAD within the SDAD for Mastercard.
The transaction is rejected when the terminal goes online,
however, by this point, an attacker with a stolen card could
have already left a shop with high value goods.

ATTACK 4: For Mastercard, we can make the Square
Terminal accept a plastic contactless card offline for over-
the-limit transactions, by just doing ATTACK 1.

Discussions. To our knowledge, this is the only over-the-
limit attack against Mastercard based on protocol specifica-
tions. While previous research found Mastercard’s protocol
more secure than Visa’s, that work looked at online transac-
tions. By examining the features discussed in the last section,
we discovered that Mastercard’s user authentication checks
are performed by backend systems, only accessible to online
terminals, therefore compromising Mastercard’s protocol
security for offline transactions.

5 Formal Modelling & Recommendations for
Plastic-Cards Attacks

To ascertain how to best fix ATTACKS 1-4, we extend the
most recent of these models [52], which uses the Tamarin
prover for cryptographic protocols [53], together with our
new findings. Tamarin lets us model protocol using multi-set
rewriting rules and will attempt to automatically prove or find
counter examples to lemma based on actions of the protocol.
We direct the reader to the Tamarin manual [54] for more
details and examples.

We enhanced the EMV models in [52] as follows:
1. Modelling offline readers. Reader sends the SDAD to the
bank via two rules (not one). First, the reader checks the
SDAD. To allow for clear offline mode, the transaction is sent
to the bank in a second rule.

2. Distinguishing between Plastic and Mobile. We modelled
VAS exchanges, as a way to differentiate between mobile
phones and plastic cards, as seen on the Square Terminal.
3. Tap-and-PIN. As we found that Mastercard only controlled
Tap-and-PIN transactions online, at the backend, we did not
model this in our offline-EMV model. For Visa, we added a
PIN number for each card, and Tap-and-PIN cards that set the
CTQ to “Online PIN required” (Byte 1 Bit 8). On receiving
this, the reader would ask for a PIN that is either provided
on a secure channel from the card, or on a public channel
from the attacker. A fresh name is used as the PIN number
meaning that the attacker cannot guess it.

In line with our attacker model we do not consider com-
prised terminals, payment devices or banks. All of the model
files are available on our repository and have detailed com-
ments explaining how the models work.

Correctness Properties. In line with our attacker model,
discussed in Section 3.2, we use three types of lemma to
check the correctness of the protocols. First, “over the limit”
attacks, that ask Tamarin to look for the existence of a pro-
tocol trace in which the terminal or the bank accept a high
value transaction, from an unauthenticated payment device
(a plastic card or a locked phone). Second, for the regulation
checks, we write lemmas that ask Tamarin to test if a plastic
card can be accepted offline and if non-Tap-and-PIN cards can
be made to do Tap-and-PIN. Third, we check for “free lunch”
attacks by asking Tamarin to find traces that are accepted by
the offline reader but then rejected by the bank.

Understanding Our Mastercard Over-the-Limit AT-
TACK 4. We used Tamarin to create an over-the-limit trace
accepted by the reader but rejected by the backend. The
trace shows: 1. The faked VAS message mimics phone inter-
action. 2. The plastic-card’s AIP lacks CDCVM support, so
the terminal selects “No CVM performed.” 3. The terminal
checks and accepts the SDAD. 4. The backend rejects the
transaction due to the absence of CDCVM. The formal model
confirms that this attack would be caught by the bank, when
the terminal goes online. Backend checks are not detailed in
EMV specifications. We tested the model with/without vari-
ous backend checks. The lack of IAD check at the backend
matches the Square Terminal’s behaviour in our ATTACK 4.

5.1 Fixing Offline EMV for Plastic Cards

5.1.1 Fixing Visa Offline. For Visa, Byte 2, Bit 8 of the CTQ
field sent from the payment device to the reader indicates if
CDCVM authentication has been used, i.e., a phone is being
used. When Visa is used in offline mode, this field is included
in the signed SDAD and so its integrity can be checked by the
reader (as per Section 2). So, making the offline reader check
Byte 2, Bit 8 is set inside the CTQ, inside the SDAD, is a good
way to stop these attacks, ensuring that only authenticated
phones are used in offline mode. The formal model confirms
this, so, it is our recommended solution for Visa.

5.1.2. Fixing Mastercard Offline. Mastercard does not
have a publicly defined field equivalent to Visa’s CTQ. So,
we consider three possible fixes.

a. Using the IAD. The IAD field encodes the device type
and indicates if the user was authenticated. For Mastercard,
it is signed in the SDAD, allowing offline terminals to verify
it. We tested whether verifying this information would stop
ATTACK 4 by requiring that offline readers only accept trans-
actions with signed IADs indicating CDCVM was performed.
Tamarin confirms this stops the attack. However, since the
IAD is proprietary data meant for the card issuer, it may not
be easily or reliably used by third-party EMV manufacturers.
I.e., our analysis shows that if Mastercard formalised the IAD
and added it to the core EMV specification, many of these
issues could be fixed easily.

b. Using the “ICC verifies PIN” CVM Result. The
CVM List and CVM Result in the Mastercard protocol seem
like logical places to enforce offline user authentication. We
tested the effect of the offline Square Terminal always setting
the CVM Result to “010002: Plaintext PIN verification per-
formed by ICC (the device)”, but Tamarin shows this does not
stop the attack, as plastic cards allow this without user authen-
tication. Testing the effect of stopping cards from responding
to this CVM Result also failed when offline readers use “No
CVM performed". However, combining both changes stops
the attack, though it would require extensive updates to both
cards and offline readers, taking years to implement.

c. Checking CDCVM supported in the AIP. The AIP
field sent from the card to the terminal includes a flag (byte 1,
bit 2), indicating if the device supports CDCVM, signaling
it is a phone, as standard plastic cards cannot do CDCVM.
We tested making the Square Terminal check this bit in the
ICC/card certificate. Tamarin confirms this stops plastic-card
ATTACKS 1-4, and we recommended this fix to Square. How-
ever, locked phones in transit mode also indicate CDCVM
support without always authenticating the user. To ensure this
fix works, we need to explore offline EMV transactions with
locked phones, discussed in Section 6.

5.2 Responsible Disclosure for ATTACKS 1-4

We informed Visa of relevant issues in ATTACKS 1-3. About
ATTACK 2, Visa said that UK regulations would soon change
to permit such Tap-and-PIN payment in the UK too, so they
would not issue a fix yet.

We informed Mastercard of our illicit over-the-limit trans-
actions with plastic Mastercards (ATTACK 4), that this may
be a wider problem, but that Square was engaged in their fix.

We also notified Square of ATTACKS 1-4. For ATTACK 1,
we recommend they check the AIP in the Integrated Circuit
Card (ICC) Certificate to detect mobile/CDCVM-capable de-
vices. Square paused UK contactless offline payments while
fixing ATTACK 1, and worked closely with us, to check fixes
before wide deployment. From October 2023 to February

2024, ATTACKS 1, 3, 4 were resolved. Square implemented
our recommendation, rewarding us with a USD5000 bounty.
See Figure 5 below for a summary of disclosures and imple-
mented fixes per attack.

6 Testing Features Centred on Mobile Devices

After Square fixed the issues described above, we shifted
our research to mobile/CDCVM-capable devices. Using our
MiMs as per Figure 2 and tests on various terminals online
and offline, we identified 6 attacks and 2 problems with
mobile payments. Figure 4 summarises our findings, showing
how they fit into the EMV ecosystem.

6.1 Screen Unlock, In-Wallet CDCVM & Tran-
sit/Transport Mode Findings and Attacks

The Features. This is “mobile(-wallet) customer validation”,
which has seen recent changes28 in 2023/2024. Mobile de-
vices typically unlock via PIN, pattern, or fingerprint, with
mobile wallets requiring additional authentication, like a fin-
gerprint, FaceID, or PIN. When near an active EMV reader,
the phone’s NFC and mobile wallet activates. It is the user
authentication inside the wallet (e.g., inside ApplePay) that
should set the “CVM perfomed” bit in the sense of the EMV
protocol. However, some vendors use the screen unlocking to
mean “CVM performed”. Transport mode, another feature,
sees further alterations around this, with in-wallet authentica-
tion and screen unlock, sometimes, bypassed entirely.

6.1.1 GooglePay

In GooglePay, to make any-amount payments, screen un-
locking (and not in-wallet authentication) is needed for non-
transport transactions. Once the phone has been unlocked
recently, no further in-wallet authentication is required.

PROBLEM 5: For screen-unlocked phones using Google-
Pay with Visa, Mastercard, we can make the EMV termi-
nals (offline and online), as well as banks and payment
networks accept over-the-limit transactions, relayed, with-
out any other MiM actions. This makes unlocked phones
with GooglePay more vulnerable to any-value relays than
ApplePay (which unlocked does still need in-wallet authen-
tication), for both Visa and Mastercard, and even more vul-
nerable than plastic cards (where a PIN-verification may be
triggered if limits are attained).

Our Experiments: For transport retailers like train gates,
GooglePay’s transport mode allows payments with the default
contactless card. If “no verification" is enabled in Google-
Profile settings, payments can be made without screen un-
locking or in-wallet authentication, on a lit-up screen, poten-
tially for any amount. We found that Square Terminal’s new

RELATED WORK:
Over-the-limit attacks

on Visa
[40,49]

Section II

RELATED WORK:
Transit-mode

attacks
[52]

Section II

EXPERIMENTS:
Square Terminal,

offline, not checking
the SDAD for Visa

Section VI.B

EXPERIMENTS: SDAD
for MC checked offline by

Square Terminal
Sections IV and VI

NO attacks re
transit-mode, re OTL, re

CVM against
GooglePay-MC or
ApplePay-MC or
SamsungPay-MC

Section VI.D

FORMAL MODEL
Section VII.A

ATTACK 9
 ApplePay-Visa locked phones

(transit, OTL+ UTL, online)
Section VI.A.2

Phones
Results

EXPERIMENTS: Square
Terminal does not check
the IAD for Visa to decide

if it is Visa with
SamsungPay, ApplePay

Section VI.D

EXPERIMENTS: Square
Terminal does accept

Samsung Pay, Visa if the
last two records are

dropped
Section VI.D

ATTACK 11: Payments UTL +
OTL unlocked phone

SamsungPay-Visa (non-transit,
UTL, OTL offline)

Section VI.D

ATTACK 10:
Visa payments WITHOUT

CARD PRESENT
Section VI.B

ATTACK 12: payments without
authentication, locked phone,

SamsungPay-Visa (transit,
OTL offline)

Section VI.D.

CONCEPT SQUARE:
Square Terminal UK

firmware, offline, accepts
ApplePay, GooglePay

only
Section VI.A.1

CONCEPTS EMV:
CVM lists, MCC,
IAD in SDAD for

MC
Section II

CONCEPT
SQUARE:

Square Terminal UK
firmware, offline,

“transit” TTQ
Section VI.A

PROBLEM 6: GooglePay-Visa
with locked screen payments

on Square Terminal (UTL
offline)

 Section VI.C.2

CONCEPT
GOOGLEPay:
locked screen

allowed for
no-CDCVM in
transit mode

Section VI.A.1
CONCEPT SamsungPay:
Phone may continue with
non-zero transactions in

transit mode
Section VI.D.

ATTACK 7: OTL payments with
locked phones

GooglePay-Visa (transit, OTL,
online)

Section VI.A.1

ATTACK 8:
Payments OTL without wallet

authentication, unlocked phones:
ApplePay-Visa (non-transit, OTL,

online)
Section VI.A.2

PROBLEM 5: Relayed payments
without authentication, unlocked
phones: GooglePay-Visa. (OTL

online)
Section VI.A.1RELATED WORK:

Relayed Payments
[45]

Section II

CONCEPT
GOOGLE:
Unlocked

screen ==
CDCVM

performed
Section VI.A.1

RECOMMENDATONS
FOR EMV Section VI.B

Figure 4: Mind-map of the Main Results from Sections 6 and 7

firmware (shipped after patching ATTACK 1) is advertis-
ing, a TTQ with the “Offline Data Authentication for Online
Authorizations" bit set (bit 1, byte 1).

Results: We found that a screen-locked GooglePay is using
only this bit in the TTQ to identify a request for a transport
transaction and activate its transport mode. This leads to:

PROBLEM 6: Screen-locked phones using GooglePay
with Visa pay by the Square Terminal (offline) for under-
the-limit transactions without any authentication, due to the
Square Terminal’s “offline for online” TTQ, and banks and
payment networks later accept it (online).

Analysis. The problem, video-ed here29, lies in that
GooglePay with Visa identifies transport in a weak way, just
via the TTQ, without even looking at the MCC. It is unfortu-
nate that the Square Terminal advertises an “offline for online”
TTQ when it is completely offline. Worse, when the reader
goes online, banks/payment networks do not stop this attack,
e.g., via checking the MCC sent by Square.

Our Experiments: We lift this to an over-the-limit attack:

ATTACK 7: We can make screen-locked phones using
GooglePay with Visa pay at a Square Terminal (offline), for
over-the-limit transactions without any authentication, by
unsetting “CVM required” flag in the TTQ (byte 2, bit 7),
and setting “CDCVM performed” flag in the CTQ (byte 2,
bit 8), à la ATTACK 3. Banks and payment networks later
accept the transaction (online).

Analysis: Due to the Square Terminal’s TTQ, GooglePay
thinks it is in transport mode. By looking at our traces (in-

cluding traces30 sniffed in the wild), GooglePay sets CDVCM-
done in the Visa CTQ when it runs in transport mode; Also,
the CVR in IAD, the CTQ in the SDAD in the trace of
ATTACK 731 show CDCVM done. ATTACK 7 should be
stopped: offline, by the Square Terminal(via the SDAD);
and/or online, by the payment networks (via the IAD).

6.1.2 ApplePay

For ApplePay, a locked phone requires screen unlocking for
EMV transactions. On top, if recently unlocked, a double-tap
may suffice for full in-wallet authentication, depending on
settings, country, and amount, as shown here32.

Our Experiments: We bypass the double-tap or authenti-
cation using a MiM attack with TTQ/CTQ-flipping, similar
to ATTACK 3, but without VAS-response replay (given we
are on mobile phones):

ATTACK 8: For screen-unlocked phones using ApplePay
with Visa, we can make the Square Terminal (offline), and
banks and payment networks (online) accept over-the-limit
transactions without ApplePay-wallet authorisation, by un-
setting/setting the same TTQ/CTQ flags as in ATTACK 7.

Analysis: Like with ATTACK 7, the Square Terminal fails
to check the CTQ in the SDAD and the payment networks do
not check the CVR in the IAD, both of which will stop the
attack Radu et al. [52] found that Apple Enhanced Contactless
Polling (ECP), US patent US11200557B233 is used to enter
transit mode for Apple, when the screen is locked.

Our Experiments: We now attempt to lift ATTACK 8 to

transit-mode attacks, using the methods in [52]:

ATTACK 9: For screen-locked phones using ApplePay
with Visa, we can make the Square Terminal (offline), banks
and payment networks (online) accept over-the-limit trans-
actions without ApplePay-wallet authorisation; we replay
Apple ECP bytes and change the Square Terminal’s MCC
to a transport one, while –for over-the-limit– we also flip
the CDCVM-relevant TTQ/CTQ flags, à la ATTACK 3.

Analysis: As per [52]’s attacks, there are lacks of backend
checks of the TTQ against the MCC to see if the terminal is
that of a transport merchant.

Discussions: It is the first time this is done offline, which
was deemed improbable by [52], assuming the SDAD checks
would be duly done.

6.2 No-Card-present Attack
The Feature: This is online readers which offer on-request
offline capability, in compliance with different regulatory
areas (e.g., the EU, the UK, the US).

Our Experiments: Via ATTACKS 7-9, we found that, in
fact, the Square Terminal’s new firmware did not verify any
data stored in the SDAD. So, we built a card emulator that
replays a sniffed Visa-card’s certificates, and responds
with fake EMV-format messages, including fake SDADs.

ATTACK 10: We can make the Square Terminal accept
offline any-value Visa payments, without any bank-issued
card being present in the transaction. Online, these payments
are declined due to missing valid cryptographic data.

Analysis: This amounts to us fabricating imaginary cards
out of thin air, and using these fake cards to pay in shops.
Again, the Square Terminal allows merchants to set limits on
offline payments, up to a maximum of £25,000; the default
limit is £100. We filmed our ATTACK 10 for £25,00034.

Discussions: In the disclosure process, we found out that
US Visa cards do not send SDADs for transactions with ter-
minals that have TTQs with “offline for online" bit set. Visa
US should adhere to the EMV specification and send SDADs,
in those cases; UK/EU Visa cards do send SDADs in such
cases. Square Terminal offline, should send a TTQ with the
‘offline’ bit set, as in its previous firmware, and –in all cases–
check the SDADs and, if not sent, reject the transaction.

7 Mastercard: Mobile & Its CVM Results

The Feature: The feature analysed here is over-the-limit
checks by Mastercard. The attacks on mobile phones above
are all against Visa. To do similar over-the-limit attacks
against Mastercard, we need to understand how the CVM op-
tions work for the Mastercard protocol, from the perspective
of both the card/phone payment devices and of terminals.

Our Experiments: We ran experiments and noticed that
the CVM List on most Mastercard payment devices35 is

“42031E031F03". This constitutes a list of three possible
verification methods for the reader to choose from, with 4203
meaning “Enciphered PIN verified online, if terminal sup-
ports”, 1E03 meaning “Signature, if terminal supports” and
1F03 meaning “No CVM required, if terminal supports”. The
EMV specification describes these options and states that the
reader should pick one and return its choice, as the CVM
Result, to the payment device.

Some phones, at the start of the CVM List, also have the
option: 4201 denoting “Enciphered PIN verified online, if
unattended cash”. For plastic cards, the CVM List most com-
monly seen is “02031E031F03” 36, which means the same as
the above “42031E031F03” CVM List seen on phones.

We experimented with plastic Mastercard cards, ApplePay
and GooglePay, whilst locked and unlocked, and with the
Square Terminal, both online and offline, as well as a terminal
pretending to be transport/transit mode (i.e., sending ECP
bytes before EMV transactions, to signal a transport operator).

Results: Table 1 shows the CVM result selected by the
reader in each case. In some cases, the CVM Result is se-
lected from the CVM List as expected, e.g., for over-the-limit,
online, the reader attempts online PIN verification. However,
the offline Square Terminal does not select a CVM from the
list and instead uses the 3F00 code to warn the device that
no CVM has been performed, the same behaviour has been
observed in transit readers. Non-Tap-and-PIN cards could
end the transaction , but –as per Section 4.2– they do not.

We found that locked ApplePay or GooglePay would end
the transaction if given the CVM Result ‘010002’ by the
reader. This makes sense, since this CVM Result tells the
device to authenticate the user, and a locked phone has not.

The CVM Result chosen by the offline Square Terminal
for mobile phones also tells the device that it must perform
CVM itself, i.e., “Plaintext PIN verification performed by
ICC”. This was not an option given in the CVM List.

Analysis: The experiments above confirm that, in line with
the Mastercard specification, the reader selects the CVM Re-
sult “Plaintext PIN verification performed by ICC”, whenever
the AIP on the card indicates that on device cardholder verifi-
cation is supported (Byte 1 Bit 2). Following the above, we
experiment with Square Terminal and conclude:

STATEMENT: We are unable to do any CDCVM-based
and/or transport-based attacks for mobile-wallets (Apple-
Pay, GooglePay, SamsungPay) using Mastercard against the
Square Terminal (offline), due to the way CVM options are
treated in Mastercard’s protocol and the Square Terminal
checking offline the Mastercard SDAD.

Discussions: Mastercard’s protocol handles CVM options
better than Visa, authenticating all CVM-related fields inside
the SDAD. And, the terminal needing to check all CVM-
related fields in the SDAD, as it must check the SDAD to
extract the AC, unlike with Visa.

Novelty/ Reliance on prior work Attack Characterisation*:
Breach of Regulation,
Free-lunch, OTL (over-
the-limit)

Root cause: Flawed technical
specification, non-compliance with
technical specification, bad
implementation

Payment
method

Payment
network

Authorisati
on when
the reader
goes online

Victims Scope: EMV-
wide vs.
Company

Impact** (via
scope, victim,
payment
method)

Who can fix / Fixed or not

ATTACK 1

Novel. No one looked at offline readers trying to
distinguish plastic cards from other devices

Regulation: Square to
block plastic offline in the
UK

- flawed specification: Square wrongly
creates a specification, whereby it it to
use VAS to identify CDCVM-capable
devices

Plastic Visa

Mastercard

Rejected
online

Cardholder: if
their card was
stolen

Square low - Square: to use AIP (indicative of CDCVM
capability, authenticated in card cert)
- disclosed in October 2023;
- fixed + bounty received

ATTACK 2

Novel. First to study 'non-tap-n-pin' cards; prior
work focused on 'tap-n-pin' cards (e.g., [49,52]);
they missed this distinction entirely.

Regulation: UK Payment
Services does not allow
tap-n-pin cards in the UK

- flawed specification: Visa specifies to
use a bit in the CTQ to encode (*non*-)
TAP-n-PIN

Plastic Visa Accepted
online

Cardholder: if
their card was
stolen

EMV-wide high - EMV/Visa: to securely signal non-tap-n-pin cards
(e.g., via AIP);
- attenuated by UK Payment Services -- to phase
out non-tap-n-pin cards

ATTACK 3

Novel - re the offline aspects. As per ATTACK 1

Incremental - re the over-the-limit aspects for
Visa [40,49,52]. But, [49] thought offline readers
stop this, via SDAD checks; we refute this.

Regulation: Square to
block plastic offline in the
UK

OTL

Freelunch

- flawed specification: see ATTACK 1
- bad implementation: Square failed to
check offline SDAD against illicit CTQ (as
admitted in disclosure)

Plastic Visa Rejected
online

Merchant (free-
lunch attack)
+
Cardholder: if
their card was
stolen

Square medium - Square - re ATTACK 1

ATTACK 4

Novel. As per ATTACK 1

Novel. First to study over-the-limit authentication in
Mastercard online+offline.

OTL

Freelunch

- non-compliance with Mastercard
specification: Mastercard's over-the-limit
customer authentication can only be
checked online, not offline, so Mastercard
plastic cards should not be used offline,
for OTL; Square infringes that
- flawed specification: see ATTACK 1

Plastic Mastercard Rejected
online

Merchant (free-
lunch attack)
 +
Cardholder: if
their card was
stolen

All offline
terminals
(demonstrated
on Square)

Mastercard

high - Square - re ATTACK 1
- EMV/Mastercard specifications: to introduce
offline checks for customer authentication (for
plastic cards)
- disclosed in October 2023;
- Fixed only for Square terminals + Mastercard
stated that they wanted Square to fix this and
nothing else.

ATTACK 7

Novel. Testing the new settings for transport-mode
for Google.

Incremental. We simplify over-the-limit, transit
attacks for Visa shown in [52], for the Square
Terminal offline, as well as for some Google
settings

UTL/OTL - flawed specification: Google lacks
sufficient EMV field checks to confirm
transport terminals.
- flawed specification: Square's 2024
firmware wrongly sets the "offline for
online" TTQ bit for offline terminals.
- non-compliance with specification:
VISA's backends should verify the AC for
transport-specific details.

GooglePay,
locked, transit
mode, no
auth/CDCVM
at all

Visa Accepted
online

Cardholder.
phone has not
been stolen, and
it is locked.

GooglePay

Visa

medium - Google: to check, e.g., MCC, etc., + ask for some
form of user input or alert them in case of payment,
for transport mode
- Square: to send TTQ with the "offline for online
bit" unset, for offline terminals
- Visa: to check online the CDCVM bits inside the
AC, as well as the MCCs.
- disclosed + not fixed. Square liaising with
parties around this.

ATTACK 8

Incremental - re the over-the-limit aspects for Visa
in [40,49]; we change them from plastic to
unlocked phones

OTL - bad specification: payment allowed
on an unlocked iPhone without further
prompting to the user for authentication in
the ApplePay;
- non-compliance with specification:
VISA's backends should check the AC for
all relevant details

ApplePay
unlocked, no
auth/CDCVM
in-wallet

Visa Accepted
online

Cardholder:
Their phone has
not been stollen,
all is needed is
that it is unlocked.

ApplePay

Visa

weak - ApplePay: to notify the user when a payment is
made.
- Visa: to check online the CDCVM bits inside the
AC
- undisclosed to Apple and Visa, since it falls
under [49], which remains unfixed since 2022.
- disclosed to Square, as part of ATTACK 9

ATTACK 9

Incremental - re the over-the-limit, transit attacks
for Visa shown in [52]. We simplify, for the Square
Terminal offline, where we do not need to modify
the TTQ.

OTL - non-compliance with specification:
VISA's backend should check the AC for
all transport + authentication details

ApplePay,
screen locked,
transit mode,
no
auth/CDCVM
at all

Visa Accepted
online

Cardholder:
Their phone has
not been stollen,
all is needed is
that it is unlocked.

ApplePay

Visa

medium - ApplePay - to notify the user when a payment is
made + to bind the ApplePolling (used with
transport PoS) into the EMV stack
- Visa - should check online the CDCVM bits inside
the AC, as well as the MCC
- undisclosed to Apple, Visa, since it falls under
the same problems disclosed by [49] in 2022 which
remain unfixed;
- disclosed to Square

ATTACK 10

Novel - we created a card emulator that replay old
EMV transactions

OTL

Freelunch

- non-compliance with specification:
Square does not check Visa's SDADs, if
their terminal is set in 'offline for online'
mode (as admitted in disclosure)

Any Visa Rejected
online

Merchant (free-
lunch attack)

Square

Visa

high - Square: to implement the EMV specification: (a)
check the SDAD at all times; (b) use TTQs strictly
for offline readers when applicable.
- Visa: US Visa cards to send SDADs for
transactions with PoS with TTQs ('offline for online'
bit set). UK/EU Visa cards do send SDADs in such
cases.
- disclosed in May 2024;
- not yet fixed; Square is working with Visa US
around this
- bounty received

ATTACKS
11/12

Novel - we made SamsungPay be illicitly
accepted offline by Square in the UK, by dropping
some cards records

Regulation: Square to
block SamsungPay in the
UK, offline

OTL

Freelunch

- bad implementation: Square accepts
Visa payments when not all the records
are present (as admitted in disclosure)

Samsung Pay,
unlocked /
locked, no
auth/CDCVM
in wallet

Visa Rejected
online

Merchant (free-
lunch attack)
+
Cardholder --
with phone
locked/unlocked

Square

Visa

medium - Square: to implement the EMV specification and
check the SDAD at all times; the error here may be
linked to the US-Visa cards problem above
- disclosed in May 2024
- not yet fixed

* Note: There are several dimensions that can be used as full characterisations of our attacks. This three-dimensional one was used also in the formal models; each attack falls in at least one of these three categories.
** Note: The full impact is shown via all columns, but that forms several preorders over our attacks and it is therefore hard to include in a simple way in the table.

Figure 5: All Our Attacks’ Dimensions at A Glance

7.1 SamsungPay & the Square Terminal
Our tests with various SamsungPay devices revealed the fol-
lowing behavior: in non-transport mode, even if the phone
is unlocked, mobile-wallet customer validation is required
for any transaction, which can be accessed from the locked
screen. In transport mode, SamsungPay allows transactions
through a locked screen without authentication, but only for
zero-value transactions. In this mode, SamsungPay does not
use proprietary protocols and, like GooglePay, relies on stan-
dard EMV fields such as TTQs and MCCs.

Feature: Square stipulates to accept only ApplePay and
GooglePay (i.e., implicitly, not other mobile-wallets), offline,
in the UK.

Our Experiment: We confirmed this via payment at-
tempts: i.e., SamsungPay is rejected in the UK37. So, akin
to ATTACKS 1-4 on illicit plastic, we asked ourselves if we
can make Square Terminal accept SamsungPay against its
specifications. And, we already knew from Section 7 that
CDCVM- or transport-based attacks for Mastercard are im-
possible because the terminal checks Mastercard’s SDAD.
But, in Visa’s case, we have:

ATTACKS 11 & 12: By unsetting the “CVM Required”
flag in the TTQ (byte 2, bit 7), and setting the “CDCVM
performed” (bit 8 in byte 2) in the CTQ, and dropping the
last two (out of four) records of the payment device, we
make the Square Terminal accept over-the-limit transactions
offline from unlocked /locked phones using SamsungPay
and Visa in normal/“Transport” mode, which is against the
Square Terminal UK requirements. The Square Terminal
accepts this offline, despite a warning on payment device
from SamsungPay. The bank and payment networks reject
this, when the reader goes online.

Analysis: In ATTACK 12, the payment device mistak-
enly enters transit mode due to the Square Terminal’s TTQ,
showing a warning (since it expects only zero values in tran-
sit/transport mode), but not stopping the transaction. In AT-
TACK 11, outside transit mode, the phone shows no error.
Our method is to drop the last two records containing the
“public-key remainder”, preventing the Square Terminal from
verifying the ICCc and SDAD; wrongly, Square Terminal
accepts the transaction afterwards. During ATTACKS 11-
12, we also found that the Square Terminal does not use
IADs to distinguish between ApplePay, GooglePay and
SamsungPay.

Discussions: This attack may be a wider issue for Square,
and may relate to ATTACK 10 (Visa-US non-compliance), but
we only used this technique for this Samsung-based attack.

8 Formal Modelling & Recommendations Cen-
tred on Mobile Devices

As in Section 5, we used formal modelling in Tamarin, and
enhanced our models in Section 5 and the models from [52]

to support our new findings on mobile-wallets in Section 6 ,
and check our suggested fixes with the new mobile features
we discovered. We do not model the records-dropping AT-
TACKS 11-12 for SamsungPay, as this may be purely an
implementation flaw; we are discussing with Square.

Fixing Offline EMV for Mobile Wallets: Our model
leads to the following recommendations. Checking the Visa
SDAD is obligatory. Checking CDCVM authentication done
bit in the CTQ stops the SDAD from locked iPhones being
accepted offline. However the attacks on GooglePay, based
on Square’s use of the “offline for online" TTQ flag and
GooglePay interpreting this as a transit reader, remain. If
Square switched to requesting a fully offline transaction in the
TTQ, this issue would be fixed. Google could also consider
revising detecting transport mode solely based on the TTQ
bits. We do not model the SamsungPay attacks, since we do
not fully understand their workings. However, offline/online
terminals should never accept a transaction if they cannot
check ICCc. And, SamsungPay in case of a warning on its
payment device should not send a valid AC.

Model Statistics: On a 64GB, 16-core MacBookPro M3,
our Visa model takes 29 minutes to check. We split the Mas-
tercard model into separate files for ApplePay and GooglePay,
each of which takes around 6 minutes to run.

Responsible Disclosure for Mobile: We disclosed our
findings and recommendations to Square and Google, but not
to Apple, as ATTACKS 8-9 are variations of known Apple
Pay-Visa issues that Visa is reportedly fixing. Google has not
responded yet. Square has been very responsive, working to
implement the SDAD, CTQ, and ICC-based recommenda-
tions, and considering changes to their TTQ. Also, Square
told us that business rules and deviations from specifications
in the US might be causing these issues: some Visa-based
devices do not respond to certain TTQs nor send the SDAD,
highlighting inconsistencies in the EMV ecosystem. For a
summary on this, please refer to Figure 5.

9 Conclusions

Examining a series of aspects (plastic cards, mobile, transit
modes, offline terminals), we were able to shed light on a
number of un-disclosed EMV-payment behaviours, especially
those linked to add-on, mobile-centric features. Some of
these lead to security shortcomings, of various types. We
followed responsible-disclosure processes, as discussed, and
a statement by Square is included in the following “Ethical
Considerations” section. Overall, we were only able to find
and fix these issues because we investigated and reverse engi-
neered the proprietary features built by a range of companies.
Individual companies may not have the ability to do this and,
we argue, should not be expected to. Rather, EMV stakehold-
ers should communicate their features with EMVCo and have
them added to the public EMV specification.

Ethical Considerations.

Attacks, Reproducibility and Ethics. In terms of EMV read-
ers, we used:
– several Square Terminals, under UK firmware. We used
them for contactless EMV payments, both offline and online.
Offline, in the UK, the Square Terminal is supposed to accept
contactlessly only GooglePay and ApplePay38.
– one online SumUp Air39 configured for Romania, one on-
line SumUp Air configured for the UK, one online SumUp
Solo configured for the UK and one online Square Reader
configured for the UK. As such, they deal with PIN-checking
for contactless cards differently.

All plastic cards, mobile devices and readers/PoS we used
are not comprised and registered to us (i.e., we do not vic-
timise retailers or the general public). We use no personal
data, or sensitive data, other than ours.

We present 10 attacks and 2 “problems”. Some of them
stem from similar problems (e.g., poor checking of a Visa
field called “SDAD”), some are unrelated to this (e.g., on
GooglePay’s transport mode), some are on plastic cards, some
on mobile, they have different victims, levels of complexity,
etc. To appreciate these aspects earlier on, we refer the reader
to Figure 5, to an overview table of all our attacks.

Statement by Parties Involved in the Responsible Disclo-
sure. The only EMV party involved who gave us a statement
to include is Square. This is as follows: “At Square, pro-
tecting the security of our seller community is our highest
priority. We recognize the important contributions that the se-
curity research community can make when it comes to finding
potential bugs and we have offered a bug bounty program to
the security research community since 2014.

We have collaborated with this research team since their
discovery and responsible disclosure of their initial findings
via our bug bounty program outlined in the following paper.
This collaboration involved replicating the issue using the
conditions detailed by the team (see Section 4) and working
closely with the research team in the testing phase of the
security update we designed for this condition.

We can confirm that a security update for the researchers’
initial disclosure has since been deployed to all susceptible
Square devices. And while we remain actively engaged with
our network partners on the security of the payments ecosys-
tem, we do not believe the additional findings represent an
increased risk to sellers and buyers transacting with offline
payments at this time.

We would like to thank these researchers for their vigilance
in identifying and responsibly disclosing their findings, as
well as their collaboration in testing the security update we
developed for their initial disclosure”.

Open-Science Considerations.

Our code (Sections 4, 6), formal models (Sections 5, 7), EMV
traces (i.e., EMV transactions – Sections 4, 6) and videos (Sec-
tions 4, 6) are at https://archive.softwareheritage.
org/browse/origin/directory/?origin_url=https:
//gitlab.com/anonym_123/anon_payments/.

We are committed to the principles of open science. Our
research involve the generation of code, and related materials,
and we disclose it all at this stage, for reproducibility purposes.
We will continue to have it available, in free-to-use licences,
after publication.

In fact, we will ensure that all our findings and methodolo-
gies are thoroughly documented and openly shared through
the publication in various format, on open repositories as well.
By doing so, we aim to contribute with new insights to the
community and facilitate further research and discussion in
the field.

References

1. https://www.emvco.com/knowledge-hub/emv-chip-growth-
continues-globally

2. https://www.emvco.com/specifications/

3. https://www.fortunebusinessinsights.com/point-of-sale-
pos-market-106336

4. https://www.wearepay.uk/what-we-do/payment-systems/

5. https://squareup.com/us/en/point-of-sale/software

6. There are other banks involved, called acquiring banks or acquirers, but
since we are not concerned with them, we can make this general

7. https://paymentcardtools.com/emv-tag-decoders/iad

8. https://www.jpmorgan.com/payments/client-resource-
center/country-specific-payment-regulations

9. https://squareup.com/help/gb/en/article/7777-process-
card-payments-with-offline-mode

10. https://www.regions.com/insights/small-business/
operations/types-of-pos-fraud-how-to-prevent-them

11. https://proxmark.com/

12. https://www.sumup.com/en-gb/air-contactless-card-
reader/

13. https://www.sumup.com/en-gb/solo-card-reader/

14. https://squareup.com/us/en/hardware/contactless-chip-
reader

15. https://squareup.com/us/en/hardware/terminal

16. https://squareup.com/gb/en/about

17. https://support.apple.com/en-gb/guide/security/
secbd55491ad/web

18. https://developers.google.com/wallet/smart-tap/
introduction/overview

19. https://gist.github.com/gm3197

https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://gitlab.com/anonym_123/anon_payments/
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://gitlab.com/anonym_123/anon_payments/
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://gitlab.com/anonym_123/anon_payments/
https://www.emvco.com/knowledge-hub/emv-chip-growth-continues-globally
https://www.emvco.com/knowledge-hub/emv-chip-growth-continues-globally
https://www.emvco.com/specifications/
https://www.fortunebusinessinsights.com/point-of-sale-pos-market-106336
https://www.fortunebusinessinsights.com/point-of-sale-pos-market-106336
https://www.wearepay.uk/what-we-do/payment-systems/
https://squareup.com/us/en/point-of-sale/software
https://paymentcardtools.com/emv-tag-decoders/iad
https://www.jpmorgan.com/payments/client-resource-center/country-specific-payment-regulations
https://www.jpmorgan.com/payments/client-resource-center/country-specific-payment-regulations
https://squareup.com/help/gb/en/article/7777-process-card-payments-with-offline-mode
https://squareup.com/help/gb/en/article/7777-process-card-payments-with-offline-mode
https://www.regions.com/insights/small-business/operations/types-of-pos-fraud-how-to-prevent-them
https://www.regions.com/insights/small-business/operations/types-of-pos-fraud-how-to-prevent-them
https://proxmark.com/
https://www.sumup.com/en-gb/air-contactless-card-reader/
https://www.sumup.com/en-gb/air-contactless-card-reader/
https://www.sumup.com/en-gb/solo-card-reader/
https://squareup.com/us/en/hardware/contactless-chip-reader
https://squareup.com/us/en/hardware/contactless-chip-reader
https://squareup.com/us/en/hardware/terminal
https://squareup.com/gb/en/about
https://support.apple.com/en-gb/guide/security/secbd55491ad/web
https://support.apple.com/en-gb/guide/security/secbd55491ad/web
https://developers.google.com/wallet/smart-tap/introduction/overview
https://developers.google.com/wallet/smart-tap/introduction/overview
https://gist.github.com/gm3197

20. https://github.com/kormax/apple-vas

21. https://docs.springcard.com/apis/NET/AppleVAS/index.
html

22. https://atlassian.idtechproducts.com/confluence/
download/attachments/30479625/Apple%20VAS%20in%
20ViVOpay%20Devices%20User%20Guide.pdf?api=v2

23. https://www.wearepay.uk/what-we-do/payment-systems/

24. For trace see https://archive.
softwareheritage.org/browse/content/sha1_git:
959fa33464a368b19448b828533fef13003fd7cd/?origin_
url=https://gitlab.com/anonym_123/anon_payments/
&path=attacks_plastic/traces/attack2-tapNPin/visa_
otl_tapnpin_rejected.txt

25. See “Tap-and-PIN” attack traces here: https://
archive.softwareheritage.org/browse/directory/
9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_
url=https://gitlab.com/anonym_123/anon_payments/&path=
attacks_plastic/traces/attack2-tapNPin.

26. For trace see https://archive.
softwareheritage.org/browse/content/sha1_git:
388445a4173bba858b616f550dce250cfbb61eb0/?origin_
url=https://gitlab.com/anonym_123/anon_payments/&path=
9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_
plastic/traces/attack3-Visa/visa_otl_plastic_CDCVM_
trick.txt

27. See traces for the plastic-Visa offline attack, ATTACK 3,
here: https://archive.softwareheritage.org/browse/
revision/b118c5afb57162ae910a68a4ae1f580bdd112e73/
?origin_url=https://gitlab.com/anonym_123/anon_
payments/&path=attacks_plastic/traces/attack3-
Visa&revision=b118c5afb57162ae910a68a4ae1f580bdd112e73 .

28. See, e.g., https://9to5google.com/2024/04/04/google-wallet-
verification/

29. GooglePay entering transport-mode just based
on TTQ; video evidence: https://archive.
softwareheritage.org/browse/content/sha1_git:
b9361f5dca554a4f67f9deda4fd15df68285f07c/?origin_
url=https://gitlab.com/anonym_123/anon_payments/
&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/
attacks_mobile/traces_and_videos/helper_
understanding/understanding_googleTransport/
googlePay_enters_transport_mode_and_pays_without_
auth_on_Square_due_to_TTQ.mp4 and https://archive.
softwareheritage.org/browse/content/sha1_git:
fdefa307169b78b1c0450ac86ec03fa632bd4ba3/?origin_
url=https://gitlab.com/anonym_123/anon_payments/
&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/
attacks_mobile/traces_and_videos/helper_understanding/
understanding_googleTransport/googlePay_does_not_enter_
transport_with_onlineSumUp_as_TTQ_not_like_Square.mp4

30. See our sniffed GooglePay paying Transport for London here:
https://archive.softwareheritage.org/browse/directory/
9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_url=
https://gitlab.com/anonym_123/anon_payments/&path=
attacks_mobile/traces_and_videos/helper_understanding/
understanding_googleTransport .

31. See the ATTACK7 trace here: https://archive.
softwareheritage.org/browse/content/sha1_git:
b71527bcc5dccf20c9fd224fde1568726e57c7e9/?origin_
url=https://gitlab.com/anonym_123/anon_payments/&path=
9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_

mobile/traces_and_videos/attack7-googleLocked/offline_
OTL_transit_attack7.txt .

32. ApplePay requires actions and authentication in
the wallet to pay; see here https://archive.
softwareheritage.org/browse/content/sha1_git:
f86b957ad5f589722de8866054f0cccea9596084/?origin_
url=https://gitlab.com/anonym_123/anon_payments/
&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/
attacks_mobile/traces_and_videos/helper_understanding/
understanding_googleTransport/applePay_does_not_enter_
transport_mode_an_pays_with_auth_on_Square_despite_to_
TTQ.mp4.

33. See Apple’s ECP here: https://patents.google.com/patent/
US11200557B2/en and https://github.com/kormax/apple-
enhanced-contactless-polling

34. Paying £25,000 with an emulated imaginary card
by an offline Square Terminal: https://archive.
softwareheritage.org/browse/content/sha1_git:
bded48b2aedcb8d12f9a6f82aa55b75607c0ce23/?origin_
url=https://gitlab.com/anonym_123/anon_payments/&path=
9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_
mobile/traces_and_videos/attack10-noCard/paying25k_
withNoCard.mp4.

35. For trace, see https://archive.
softwareheritage.org/browse/content/sha1_git:
d9c476682da86609897dc0496e78d7e61269fc0d/?origin_
url=https://gitlab.com/anonym_123/anon_payments/&path=
9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_
plastic/traces/helper_understanding/traces_CVMResults/
MCapplephonelockedonlineUTL.txt

36. For trace see https://archive.
softwareheritage.org/browse/content/sha1_git:
722096b0bef02298a1272396da95a6e6aef72090/?origin_
url=https://gitlab.com/anonym_123/anon_payments/&path=
attacks_plastic/traces/helper_understanding/traces_
CVMResults/MCplasticonlineproxsniff.txt

37. https://archive.softwareheritage.org/browse/content/
sha1_git:224b744281a6ce64e9df20b7d09a9cdd78452801/
?origin_url=https://gitlab.com/
anonym_123/anon_payments/&path=
9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_
mobile/traces_and_videos/helper_understanding/
understanding_samsungPay_onSquare/noSamsungPay-
accepted-normally-on-square.mp4

38. https://squareup.com/help/gb/en/article/7777-process-
card-payments-with-offline-mode

39. https://www.sumup.com/en-gb/air-contactless-card-
reader/

[40] David Basin, Ralf Sasse, and Jorge Toro-Pozo. Card
brand mixup attack: Bypassing the PIN in non-visa
cards by using them for visa transactions. In 30th
USENIX Security Symposium, 2021.

[41] David Basin, Patrick Schaller, and Jorge Toro-Pozo.
Inducing authentication failures to bypass credit card
PINs. In 32nd USENIX Security Symposium (USENIX

https://github.com/kormax/apple-vas
https://docs.springcard.com/apis/NET/AppleVAS/index.html
https://docs.springcard.com/apis/NET/AppleVAS/index.html
https://atlassian.idtechproducts.com/confluence/download/attachments/30479625/Apple%20VAS%20in%20ViVOpay%20Devices%20User%20Guide.pdf?api=v2
https://atlassian.idtechproducts.com/confluence/download/attachments/30479625/Apple%20VAS%20in%20ViVOpay%20Devices%20User%20Guide.pdf?api=v2
https://atlassian.idtechproducts.com/confluence/download/attachments/30479625/Apple%20VAS%20in%20ViVOpay%20Devices%20User%20Guide.pdf?api=v2
https://www.wearepay.uk/what-we-do/payment-systems/
https://archive.softwareheritage.org/browse/content/sha1_git:959fa33464a368b19448b828533fef13003fd7cd/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack2-tapNPin/visa_otl_tapnpin_rejected.txt
https://archive.softwareheritage.org/browse/content/sha1_git:959fa33464a368b19448b828533fef13003fd7cd/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack2-tapNPin/visa_otl_tapnpin_rejected.txt
https://archive.softwareheritage.org/browse/content/sha1_git:959fa33464a368b19448b828533fef13003fd7cd/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack2-tapNPin/visa_otl_tapnpin_rejected.txt
https://archive.softwareheritage.org/browse/content/sha1_git:959fa33464a368b19448b828533fef13003fd7cd/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack2-tapNPin/visa_otl_tapnpin_rejected.txt
https://archive.softwareheritage.org/browse/content/sha1_git:959fa33464a368b19448b828533fef13003fd7cd/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack2-tapNPin/visa_otl_tapnpin_rejected.txt
https://archive.softwareheritage.org/browse/content/sha1_git:959fa33464a368b19448b828533fef13003fd7cd/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack2-tapNPin/visa_otl_tapnpin_rejected.txt
https://archive.softwareheritage.org/browse/directory/9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack2-tapNPin
https://archive.softwareheritage.org/browse/directory/9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack2-tapNPin
https://archive.softwareheritage.org/browse/directory/9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack2-tapNPin
https://archive.softwareheritage.org/browse/directory/9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack2-tapNPin
https://archive.softwareheritage.org/browse/directory/9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack2-tapNPin
https://archive.softwareheritage.org/browse/content/sha1_git:388445a4173bba858b616f550dce250cfbb61eb0/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/attack3-Visa/visa_otl_plastic_CDCVM_trick.txt
https://archive.softwareheritage.org/browse/content/sha1_git:388445a4173bba858b616f550dce250cfbb61eb0/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/attack3-Visa/visa_otl_plastic_CDCVM_trick.txt
https://archive.softwareheritage.org/browse/content/sha1_git:388445a4173bba858b616f550dce250cfbb61eb0/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/attack3-Visa/visa_otl_plastic_CDCVM_trick.txt
https://archive.softwareheritage.org/browse/content/sha1_git:388445a4173bba858b616f550dce250cfbb61eb0/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/attack3-Visa/visa_otl_plastic_CDCVM_trick.txt
https://archive.softwareheritage.org/browse/content/sha1_git:388445a4173bba858b616f550dce250cfbb61eb0/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/attack3-Visa/visa_otl_plastic_CDCVM_trick.txt
https://archive.softwareheritage.org/browse/content/sha1_git:388445a4173bba858b616f550dce250cfbb61eb0/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/attack3-Visa/visa_otl_plastic_CDCVM_trick.txt
https://archive.softwareheritage.org/browse/content/sha1_git:388445a4173bba858b616f550dce250cfbb61eb0/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/attack3-Visa/visa_otl_plastic_CDCVM_trick.txt
https://archive.softwareheritage.org/browse/revision/b118c5afb57162ae910a68a4ae1f580bdd112e73/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack3-Visa&revision=b118c5afb57162ae910a68a4ae1f580bdd112e73
https://archive.softwareheritage.org/browse/revision/b118c5afb57162ae910a68a4ae1f580bdd112e73/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack3-Visa&revision=b118c5afb57162ae910a68a4ae1f580bdd112e73
https://archive.softwareheritage.org/browse/revision/b118c5afb57162ae910a68a4ae1f580bdd112e73/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack3-Visa&revision=b118c5afb57162ae910a68a4ae1f580bdd112e73
https://archive.softwareheritage.org/browse/revision/b118c5afb57162ae910a68a4ae1f580bdd112e73/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack3-Visa&revision=b118c5afb57162ae910a68a4ae1f580bdd112e73
https://archive.softwareheritage.org/browse/revision/b118c5afb57162ae910a68a4ae1f580bdd112e73/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/attack3-Visa&revision=b118c5afb57162ae910a68a4ae1f580bdd112e73
https://9to5google.com/2024/04/04/google-wallet-verification/
https://9to5google.com/2024/04/04/google-wallet-verification/
https://archive.softwareheritage.org/browse/content/sha1_git:b9361f5dca554a4f67f9deda4fd15df68285f07c/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_enters_transport_mode_and_pays_without_auth_on_Square_due_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:b9361f5dca554a4f67f9deda4fd15df68285f07c/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_enters_transport_mode_and_pays_without_auth_on_Square_due_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:b9361f5dca554a4f67f9deda4fd15df68285f07c/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_enters_transport_mode_and_pays_without_auth_on_Square_due_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:b9361f5dca554a4f67f9deda4fd15df68285f07c/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_enters_transport_mode_and_pays_without_auth_on_Square_due_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:b9361f5dca554a4f67f9deda4fd15df68285f07c/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_enters_transport_mode_and_pays_without_auth_on_Square_due_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:b9361f5dca554a4f67f9deda4fd15df68285f07c/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_enters_transport_mode_and_pays_without_auth_on_Square_due_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:b9361f5dca554a4f67f9deda4fd15df68285f07c/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_enters_transport_mode_and_pays_without_auth_on_Square_due_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:b9361f5dca554a4f67f9deda4fd15df68285f07c/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_enters_transport_mode_and_pays_without_auth_on_Square_due_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:b9361f5dca554a4f67f9deda4fd15df68285f07c/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_enters_transport_mode_and_pays_without_auth_on_Square_due_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:fdefa307169b78b1c0450ac86ec03fa632bd4ba3/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_does_not_enter_transport_with_onlineSumUp_as_TTQ_not_like_Square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:fdefa307169b78b1c0450ac86ec03fa632bd4ba3/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_does_not_enter_transport_with_onlineSumUp_as_TTQ_not_like_Square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:fdefa307169b78b1c0450ac86ec03fa632bd4ba3/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_does_not_enter_transport_with_onlineSumUp_as_TTQ_not_like_Square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:fdefa307169b78b1c0450ac86ec03fa632bd4ba3/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_does_not_enter_transport_with_onlineSumUp_as_TTQ_not_like_Square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:fdefa307169b78b1c0450ac86ec03fa632bd4ba3/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_does_not_enter_transport_with_onlineSumUp_as_TTQ_not_like_Square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:fdefa307169b78b1c0450ac86ec03fa632bd4ba3/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_does_not_enter_transport_with_onlineSumUp_as_TTQ_not_like_Square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:fdefa307169b78b1c0450ac86ec03fa632bd4ba3/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_does_not_enter_transport_with_onlineSumUp_as_TTQ_not_like_Square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:fdefa307169b78b1c0450ac86ec03fa632bd4ba3/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/googlePay_does_not_enter_transport_with_onlineSumUp_as_TTQ_not_like_Square.mp4
https://archive.softwareheritage.org/browse/directory/9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport
https://archive.softwareheritage.org/browse/directory/9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport
https://archive.softwareheritage.org/browse/directory/9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport
https://archive.softwareheritage.org/browse/directory/9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport
https://archive.softwareheritage.org/browse/directory/9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport
https://archive.softwareheritage.org/browse/content/sha1_git:b71527bcc5dccf20c9fd224fde1568726e57c7e9/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack7-googleLocked/offline_OTL_transit_attack7.txt
https://archive.softwareheritage.org/browse/content/sha1_git:b71527bcc5dccf20c9fd224fde1568726e57c7e9/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack7-googleLocked/offline_OTL_transit_attack7.txt
https://archive.softwareheritage.org/browse/content/sha1_git:b71527bcc5dccf20c9fd224fde1568726e57c7e9/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack7-googleLocked/offline_OTL_transit_attack7.txt
https://archive.softwareheritage.org/browse/content/sha1_git:b71527bcc5dccf20c9fd224fde1568726e57c7e9/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack7-googleLocked/offline_OTL_transit_attack7.txt
https://archive.softwareheritage.org/browse/content/sha1_git:b71527bcc5dccf20c9fd224fde1568726e57c7e9/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack7-googleLocked/offline_OTL_transit_attack7.txt
https://archive.softwareheritage.org/browse/content/sha1_git:b71527bcc5dccf20c9fd224fde1568726e57c7e9/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack7-googleLocked/offline_OTL_transit_attack7.txt
https://archive.softwareheritage.org/browse/content/sha1_git:b71527bcc5dccf20c9fd224fde1568726e57c7e9/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack7-googleLocked/offline_OTL_transit_attack7.txt
https://archive.softwareheritage.org/browse/content/sha1_git:f86b957ad5f589722de8866054f0cccea9596084/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/applePay_does_not_enter_transport_mode_an_pays_with_auth_on_Square_despite_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:f86b957ad5f589722de8866054f0cccea9596084/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/applePay_does_not_enter_transport_mode_an_pays_with_auth_on_Square_despite_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:f86b957ad5f589722de8866054f0cccea9596084/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/applePay_does_not_enter_transport_mode_an_pays_with_auth_on_Square_despite_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:f86b957ad5f589722de8866054f0cccea9596084/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/applePay_does_not_enter_transport_mode_an_pays_with_auth_on_Square_despite_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:f86b957ad5f589722de8866054f0cccea9596084/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/applePay_does_not_enter_transport_mode_an_pays_with_auth_on_Square_despite_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:f86b957ad5f589722de8866054f0cccea9596084/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/applePay_does_not_enter_transport_mode_an_pays_with_auth_on_Square_despite_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:f86b957ad5f589722de8866054f0cccea9596084/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/applePay_does_not_enter_transport_mode_an_pays_with_auth_on_Square_despite_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:f86b957ad5f589722de8866054f0cccea9596084/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/applePay_does_not_enter_transport_mode_an_pays_with_auth_on_Square_despite_to_TTQ.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:f86b957ad5f589722de8866054f0cccea9596084/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_googleTransport/applePay_does_not_enter_transport_mode_an_pays_with_auth_on_Square_despite_to_TTQ.mp4
https://patents.google.com/patent/US11200557B2/en
https://patents.google.com/patent/US11200557B2/en
https://github.com/kormax/apple-enhanced-contactless-polling
https://github.com/kormax/apple-enhanced-contactless-polling
https://archive.softwareheritage.org/browse/content/sha1_git:bded48b2aedcb8d12f9a6f82aa55b75607c0ce23/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack10-noCard/paying25k_withNoCard.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:bded48b2aedcb8d12f9a6f82aa55b75607c0ce23/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack10-noCard/paying25k_withNoCard.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:bded48b2aedcb8d12f9a6f82aa55b75607c0ce23/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack10-noCard/paying25k_withNoCard.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:bded48b2aedcb8d12f9a6f82aa55b75607c0ce23/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack10-noCard/paying25k_withNoCard.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:bded48b2aedcb8d12f9a6f82aa55b75607c0ce23/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack10-noCard/paying25k_withNoCard.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:bded48b2aedcb8d12f9a6f82aa55b75607c0ce23/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack10-noCard/paying25k_withNoCard.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:bded48b2aedcb8d12f9a6f82aa55b75607c0ce23/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/attack10-noCard/paying25k_withNoCard.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:d9c476682da86609897dc0496e78d7e61269fc0d/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/helper_understanding/traces_CVMResults/MCapplephonelockedonlineUTL.txt
https://archive.softwareheritage.org/browse/content/sha1_git:d9c476682da86609897dc0496e78d7e61269fc0d/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/helper_understanding/traces_CVMResults/MCapplephonelockedonlineUTL.txt
https://archive.softwareheritage.org/browse/content/sha1_git:d9c476682da86609897dc0496e78d7e61269fc0d/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/helper_understanding/traces_CVMResults/MCapplephonelockedonlineUTL.txt
https://archive.softwareheritage.org/browse/content/sha1_git:d9c476682da86609897dc0496e78d7e61269fc0d/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/helper_understanding/traces_CVMResults/MCapplephonelockedonlineUTL.txt
https://archive.softwareheritage.org/browse/content/sha1_git:d9c476682da86609897dc0496e78d7e61269fc0d/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/helper_understanding/traces_CVMResults/MCapplephonelockedonlineUTL.txt
https://archive.softwareheritage.org/browse/content/sha1_git:d9c476682da86609897dc0496e78d7e61269fc0d/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/helper_understanding/traces_CVMResults/MCapplephonelockedonlineUTL.txt
https://archive.softwareheritage.org/browse/content/sha1_git:d9c476682da86609897dc0496e78d7e61269fc0d/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_plastic/traces/helper_understanding/traces_CVMResults/MCapplephonelockedonlineUTL.txt
https://archive.softwareheritage.org/browse/content/sha1_git:722096b0bef02298a1272396da95a6e6aef72090/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/helper_understanding/traces_CVMResults/MCplasticonlineproxsniff.txt
https://archive.softwareheritage.org/browse/content/sha1_git:722096b0bef02298a1272396da95a6e6aef72090/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/helper_understanding/traces_CVMResults/MCplasticonlineproxsniff.txt
https://archive.softwareheritage.org/browse/content/sha1_git:722096b0bef02298a1272396da95a6e6aef72090/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/helper_understanding/traces_CVMResults/MCplasticonlineproxsniff.txt
https://archive.softwareheritage.org/browse/content/sha1_git:722096b0bef02298a1272396da95a6e6aef72090/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/helper_understanding/traces_CVMResults/MCplasticonlineproxsniff.txt
https://archive.softwareheritage.org/browse/content/sha1_git:722096b0bef02298a1272396da95a6e6aef72090/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/helper_understanding/traces_CVMResults/MCplasticonlineproxsniff.txt
https://archive.softwareheritage.org/browse/content/sha1_git:722096b0bef02298a1272396da95a6e6aef72090/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=attacks_plastic/traces/helper_understanding/traces_CVMResults/MCplasticonlineproxsniff.txt
https://archive.softwareheritage.org/browse/content/sha1_git:224b744281a6ce64e9df20b7d09a9cdd78452801/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_samsungPay_onSquare/noSamsungPay-accepted-normally-on-square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:224b744281a6ce64e9df20b7d09a9cdd78452801/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_samsungPay_onSquare/noSamsungPay-accepted-normally-on-square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:224b744281a6ce64e9df20b7d09a9cdd78452801/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_samsungPay_onSquare/noSamsungPay-accepted-normally-on-square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:224b744281a6ce64e9df20b7d09a9cdd78452801/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_samsungPay_onSquare/noSamsungPay-accepted-normally-on-square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:224b744281a6ce64e9df20b7d09a9cdd78452801/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_samsungPay_onSquare/noSamsungPay-accepted-normally-on-square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:224b744281a6ce64e9df20b7d09a9cdd78452801/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_samsungPay_onSquare/noSamsungPay-accepted-normally-on-square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:224b744281a6ce64e9df20b7d09a9cdd78452801/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_samsungPay_onSquare/noSamsungPay-accepted-normally-on-square.mp4
https://archive.softwareheritage.org/browse/content/sha1_git:224b744281a6ce64e9df20b7d09a9cdd78452801/?origin_url=https://gitlab.com/anonym_123/anon_payments/&path=9484e7ae7a6c345c0993943a6fbbfb049f1fbe79/attacks_mobile/traces_and_videos/helper_understanding/understanding_samsungPay_onSquare/noSamsungPay-accepted-normally-on-square.mp4
https://squareup.com/help/gb/en/article/ 7777-process-card-payments-with-offline-mode
https://squareup.com/help/gb/en/article/ 7777-process-card-payments-with-offline-mode
https://www.sumup.com/en-gb/ air-contactless-card-reader/
https://www.sumup.com/en-gb/ air-contactless-card-reader/

Security 23), pages 3065–3079, Anaheim, CA, August
2023. USENIX Association.

[42] David A. Basin, Ralf Sasse, and Jorge Toro-Pozo. The
EMV standard: Break, fix, verify. In Security and Pri-
vacy (SP), 2021.

[43] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc
Sylvestre. ProVerif 2.00: Automatic cryptographic pro-
tocol verifier, user manual and tutorial, 2018.

[44] Ioana Boureanu, Tom Chothia, Alexandre Debant, and
Stéphanie Delaune. Security Analysis and Implementa-
tion of Relay-Resistant Contactless Payments. In Com-
puter and Communications Security (CCS), 2020.

[45] Tom Chothia, Flavio D. Garcia, Joeri de Ruiter, Jordi
van den Breekel, and Matthew Thompson. Relay cost
bounding for contactless EMV payments. In Financial
Cryptography (FC), LNCS, 2015.

[46] J. de Ruiter and E. Poll. Formal analysis of the emv
protocol suite. In Theory of Security and Applications -
Joint Workshop, TOSCA, 2011.

[47] D. Dolev and A. Yao. On the Security of Public-Key
Protocols. IEEE Transactionson Information Theory 29,
29(2), 1983.

[48] Martin Emms, Budi Arief, Nicholas Little, and Aad
van Moorsel. Risks of offline verify pin on contactless
cards. In Ahmad-Reza Sadeghi, editor, Financial Cryp-
tography and Data Security, pages 313–321, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[49] L.-A. Galloway and T. Yunusov. First contact: New
vulnerabilities in contactless payments. In Black Hat
Europe, 2019.

[50] ISO. 7816-4: 2020 – Identification cards – Integrated cir-
cuit cards Part 4: Organization, security and commands
for interchange. Standard, International Organization
for Standardization, 2020.

[51] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin.
The tamarin prover for the symbolic analysis of secu-
rity protocols. In Computer Aided Verification - 25th
International Conference, CAV, 2013.

[52] Andreea-Ina Radu, Tom Chothia, Christopher J.P. New-
ton, Ioana Boureanu, and Liqun Chen. Practical emv
relay protection. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 1737–1756, 2022.

[53] The Tamarin Team. Tamarin-Prover Manual. Security
Protocol Analysis in the Symbolic Model. 9 2021.

[54] The Tamarin Team. Tamarin prover manual. The
Tamarin Team, 2024.

[55] Aleksei Stennikov Timur Yunusov, Artem Ivachev. New
vulnerabilities in public transport schemes for apple pay,
samsung pay, gpay. White Paper, 2021.

[56] Visa. Visa merchant data standards manual, 2019.

[57] Timur Yunusov. Hand in your pocket without you notic-
ing: Current state of mobile wallet security. Black Hat
Europe, 2021.

A Online vs Offline EMV, At a Glance

Figure 6: Online & Offline EMV in Visa & Mastercard

B More on Our Methodology

Figure 7: Our Methodology for Online-EMV Attacks (arrows
form a relay-based MiM attack; red arrows – active MiMs)

C The VAS Protocol – Details

The first step is for the reader to select the VAS app, by send-
ing the “SELECT OSE.VAS.01” message to the phone. The
phone replies with a TLV message, which uses different tag
meanings to EMV. The tags we have seen are: 50: applica-
tion name e.g., ‘ApplePay’, 9F21: version e.g., 0100, 9F23
capabilities e.g., VAS supported, and 9F24 to provide a nonce.

The reader then issues a GET DATA command. This com-
mand includes the pass type ID, a nonce, terminal capabilities
and optionally a URL. The phone then generates an ephemeral
ECDH key and uses the ANSI X9.63 SHA 256 key derivation
function to combine this with the long term key and nonces
to make a session key. The pass data is then encrypted with
AES128 GCM and sent to the reader with the ephemeral key.

D Decoding the SDAD

To the best of our knowledge, past papers have refered to
the EMV specification for this, however the specification
documents are quite vague, so some guess work has been
used. In this section we decode the certificates and the SDAD,
so we can clearly demonstrate what exactly is authenticated.

The card holds two certificates: 1) the Issuer’s; 2). the
ICC’s (card’s). During the transaction it may also generate the
signed SDAD. Each of these are a single block of RSA. The
reader holds the public key certificates of the issuers, which
are publicly available, e.g., https://www.eftlab.com/
knowledge-base/list-of-ca-public-keys and the card
indicates which key was used to sign the Issuer Certificate in
the Key Index field sent by the card. The reader applies RSA
to decrypt this Issuer Certificate, e.g.,

Issuer Certificate from Visa card:
Cert Header: 6a
Certificate Format: 02
Leftmost PAN digits: 483205ff
Cert Expiration Date: 1223
Cert Serial Number: 037691
Hash Algorithm Indicator: 01
Issuer Public Key Algorithm Indicator: 01
Issuer Public Key Length: b0
Issuer Public Key Exponent Length: 01
Leftmost Bytes of the Issuer Public Key:
b7122d435423228412c77896488bee7056f81109
... 1f7e89cfabf64928f31
Hash: 0d4bfa9a3c98a03dc57c1e4c6af34ed71d
1ee98d
Trailing byte: bc

Hashed data is the ICC cert data expect
header, hash and trailing byte + ICC
Public Key Expo

We found the hashed data by trial and error. Mastercard
contain more data in the hash, i.e., the ICC cert data, ICC
Public Key Exponent, all of the second record and the AIP.

https://www.eftlab.com/knowledge-base/list-of-ca-public-keys
https://www.eftlab.com/knowledge-base/list-of-ca-public-keys

As the signature can be no longer than the key, the Issuer
Certificate only contains the leftmost bytes of the key used for
the ICC Certificate. The right most bytes are sent in the clear
in READ RECORDS. Putting these bytes together makes
it possible to decrypt the ICC Certificate as well, which is
similar to the one above.

The SDAD is shorter than the ICC or Issuer Certificate so
the entire SDAD key fits inside the ICC Certificate. Using
this we can decrypt the SDAD:

SDAD:
Cert Header: 6a
Certificate Format: 95
Hash Algorithm Indicator: 01
ICC Dynamic Data Length (hex): 03
ICC Dynamic Data (ATC): 0200b4
Padding: bbbbbbbbbbbb...bbbbbbbbb
Hash: 733f8f64b5a2e9f0b9147282e398050121
adb47a
Trailing byte: bc

Hashed data is the UN, Amount, Currency and
CARD data

We found that Visa included less data in the SDAD than some
previous authors have claimed. However, the card data, in
the hash, does contain the CTQ, so the reader can check the
integrity of this field. The Mastercard SDAD contains more
information, including the card records and the IAD.

E Decoding CVM Results

Offline
UTL

Offline
OTL

Online
UTL

Online
OTL

Plastic Card (offline) 3F0001 3F0001 1F0302 020300
Apple/Google Pay
(locked or unlocked)

010002 010002 3F0002 010002

(a) 3F0001: No CVM performed; No CVM performed; Failed (or no CVM
Condition Code satisfied); (b) 1F0302: No CVM required; If terminal

supports the CVM, Successful; (c) 3F0002: No CVM performed; No CVM
performed; Successful; (d) 020300: Enciphered PIN verified online; If

terminal supports the CVM; Unknown; (e) 010002: Plaintext PIN
verification performed by ICC; No CVM performed; Successful

Table 1: CVM Results with the Square Terminal

F Diagram of Mastercard’s Protocol with Rel-
evant Details Highlighted

CVM List includes

 “CVM= customer-validation methods”
 if the device support PIN, or CDCVM,
or signature, all all….

CVM Result
instructs the card what type of
customer validations the reader
expects; inline with the CVM List and
the reader’s abilities….

CDOL1 includes the reader’s
expected CVM Result is in the
SDAD….

Figure 8: Mastercard’s PayPassProtocol (Most-relevant EMV
fields in bold face and explained).

G Relevant EMV Fields and Bits

AC Application Cryptogram A cryptogram generated by the card and used by the Issuer to confirm the legitimacy of
the transaction.

AFL Application File Locator A list of application data records stored on the card. This is used to indicate to the terminal
what data should be used when processing the transaction.

AID Application Identifier An Application Identifier uniquely labels an Europay, Mastercard, and Visa (EMV) appli-
cation. A card reports to a reader the AIDs programmed into it, and the reader will select
a supported one to process a transaction.

AIP Application Interchange Profile This indicates to the terminal what processing should be done for the transaction.
ATC Application Transaction Counter A counter stored on the card and incremented for each transaction. The Issuer monitors

this value which should always increase.
CDCVM Consumer Device CVM The authentication method used on the consumer’s own device for cardholder verification.
CDOL Card Risk Management Data Object

List
This list specifies the data to be used when generating the AC.

CID Cryptogram Information Data This data is returned by the card as part of the response to the Generate AC command. It
is used to indicate the type of cryptogram and the actions to be taken by the terminal.

CTQ Card Transaction Qualifier This is set on the card when it is issued and is used to control what actions the terminal
should take during a transaction.

CV Cardholder Verification Verifying that it is the legitimate cardholder who is making the transaction.
CVMs Cardholder Verification Methods These are used to verify that the right cardholder is present during the payment.
CVR Card Verification Results Data returned to the Issuer as part of the IAD.
FCI File Control Information This is a template that gives information about the data fields that follow. The FCI is not

specific to EMV, it is part of the Level 2 specification (ISO/IEC 7816-4 [50]).
GEN AC Generate AC The instruction to generate the application cryptogram.

GPO Get Processing Options A command sent to the card with the requested PDOL data to retrieve transaction specific
application data (AFL and IAD).

IAC Issuer Action Code This specifies what action the Issuer wants to be taken based on the TVR. Possible actions
are: default, denial and online.

IAD Issuer Application Data Proprietary application data to be used in the transaction.
ICC Issuer Country Code Indicates the country of the card issuer.

MCC Merchant Category Code An ISO 18245 code used to classify the business type.
PDOL Processing options Data Object List A list of data sent to the card for it to use when processing the transaction.
SDAD Signed Dynamic Application Data A digital signature on the data used for DDA, or SDA.
Track 2 User’s account information on the

card
The location of the user’s data on the card.

TRID Token Requestor ID ID which uniquely identifies the pairing of Token Requester with the Token Service
Provider.

TRM Terminal Risk Management The processes carried out on the terminal to protect from fraud.
TTQ Terminal Transaction Qualifier Data fixed on the terminal detailing its abilities and requirements.
TVR Terminal Verification Results This 5 byte result contains flags that show the result of the different processing functions

that have been carried out as part of the transaction.
UN Unpredictable Number A nonce used as part of a transaction. Both the terminal and the card use nonces.

Relevant EMV field Relevant EMV flag in this field Position in field
AIP On device cardholder verification supported Byte 1, Bit 2

CTQ Online PIN Required Byte 1, Bit 8
CDCVM performed Byte 2, Bit 8

TTQ Offline Data Authentication for Online Authorizations supported Byte 1, Bit 1
CVM required Byte 2, Bit 7

Table 3: Relevant EMV fields, flags and their position.

	Introduction
	Background & Related Work
	EMV Parties & Online/Offline Executions
	On-Device Customer Validation (CDCVM)
	The Visa & Mastercard Protocols
	Related Work

	Threat Model & Attacks' Methodology
	EMV and Proprietary Regulations
	Threat Model, Attacks' Phases & Victims
	Our Tools and Methodology

	Testing Features Centered on Plastic Cards
	Offline restrictions to smart phones
	Tap-and-PIN vs Non-Tap-and-PIN Cards
	Offline Over-the-Limit Visa Transactions
	Offline Over-the-Limit MC Transactions

	Formal Modelling & Recommendations for Plastic-Cards Attacks
	Fixing Offline EMV for Plastic Cards
	Responsible Disclosure for ATTACKS 1-4

	Testing Features Centred on Mobile Devices
	Screen Unlock, In-Wallet CDCVM & Transit/Transport Mode Findings and Attacks
	GooglePay
	ApplePay

	No-Card-present Attack

	 Mastercard: Mobile & Its CVM Results
	SamsungPay & the Square Terminal

	Formal Modelling & Recommendations Centred on Mobile Devices
	Conclusions
	Online vs Offline EMV, At a Glance
	More on Our Methodology
	The VAS Protocol – Details
	Decoding the SDAD
	Decoding CVM Results
	Diagram of Mastercard's Protocol with Relevant Details Highlighted
	Relevant EMV Fields and Bits

