An Attack Against Message Authentication in the ERTMS
Train to Trackside Communication Protocols

Tom Chothia
University of Birmingham
Birmingham, UK
t.p.chothia@cs.bham.ac.uk

Mihai Ordean
University of Birmingham
Birmingham, UK
m.ordean@cs.bham.ac.uk

Joeri de Ruiter
Radboud University
Nijmegen, NL
joeri@cs.ru.nl

Richard J. Thomas
University of Birmingham
Birmingham, UK
r.j.thomas@cs.bham.ac.uk

ABSTRACT

This paper presents the results of a cryptographic analysis
of the protocols used by the European Rail Traffic Manage-
ment System (ERTMS). A stack of three protocols secures
the communication between trains and trackside equipment;
encrypted radio communication is provided by the GSM-R
protocol, on top of this the EuroRadio protocol provides
authentication for a train control application-level proto-
col. We present an attack which exploits weaknesses in all
three protocols: GSM-R has the same well known weak-
nesses as the GSM protocol, and we present a new collision
attack against the EuroRadio protocol. Combined with de-
sign weaknesses in the application-level protocol, these vul-
nerabilities allow an attacker, who observes a MAC collision,
to forge train control messages. We demonstrate this at-
tack with a proof of concept using train control messages we
have generated ourselves. Currently, ERTMS is only used
to send small amounts of data for short sessions, therefore
this attack does not present an immediate danger. However,
if EuroRadio was to be used to transfer larger amounts of
data trains would become vulnerable to this attack. Addi-
tionally, we calculate that, under reasonable assumptions,
an attacker who could monitor all backend control centres
in a country the size of the UK for 45 days would have a 1%
chance of being able to take control of a train.

1. INTRODUCTION

The European Rail Traffic Management System (ERTMS)
Standard provides a suite of protocols used to deliver next-
generation train management and signalling.! This standard
is designed with the intention to enable trains to interoper-
ate across borders and optimise the running operation of

"http://www.ertms.net/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

AsiaCCS ’17, April 02 - 06, 2017, Abu Dhabi, United Arab Emirates.

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4944-4/17/04. .. $15.00.

DOL: http://dx.doi.org/10.1145,/3052973.3053027

railways. At present, the system is being rolled out across
FEurope and also on high-speed lines around the world.

ERTMS is formed of three core communication layers:
GSM-R, EuroRadio and the Application Layer protocol (see
Figure 1). The EuroRadio and the Application Layer proto-
cols form ETCS, the European Train Control System. The
lowest layer of the stack, GSM-R, is a rail-specific variant
of the GSM protocol, used for communications between the
train and trackside infrastructure. EuroRadio, the middle
layer, provides authentication and integrity of messages sent
between the train and track side components using crypto-
graphic MACs. The Application Layer protocol is the high-
est layer of the stack; this is a stateful protocol that includes
timestamps and message acknowledgements to prevent the
replay of messages and ensure successful communication.

In this paper, we present the results of a cryptographic
analysis of the ERTMS communication stack, in which we
determined whether arbitrary, unauthorised messages can
be sent to trains or trackside equipment. We show that one
such attack is possible and give details on the exact circum-
stances which would allow it to happen. We also propose
several solutions to mitigate this vulnerability.

The MAC algorithm used in EuroRadio is a modified ver-
sion of the ISO 9797-1 MAC Algorithm 3 [13, 23], a standard
which was introduced in 2011. The ISO algorithm is a CBC-
MAC that uses a single DES transformation for all but the
last block, which is encrypted using triple DES (3DES) using
two different keys. The use of only two keys for the 3DES
operation is a potential weakness, so EuroRadio uses triple
DES (3DES), with 3 distinct keys, for this final block.

As with any 64-bit MAC, it is possible for collisions to
occur, i.e., two different messages may have the same MAC
for a particular key. Such a collision is unlikely (requiring
229 messages for a 1% chance) however an attacker that can
wait long enough will eventually observe one. A well de-
signed protocol should not be vulnerable to an attacker that
observes colliding MACs. However, we show in Section 4
that in the case of EuroRadio that such a collision can be
used to retrieve the first of the three DES keys using brute-
force.

Establishing one of the keys used by the MAC should
not pose an immediate threat to the integrity of the pro-
tocol, as the final transformation when generating a MAC
involves a 3DES encryption with three distinct keys. An
attacker, therefore, cannot simply generate a valid MAC

for any ERTMS message to send to a train. However, the
ERTMS specification allows a number of messages to be sent
with optional packets. By using these optional packets, we
show that it is possible to carefully craft a forged message
with a valid MAC, e.g. a Movement Authority allowing a
train to proceed further than it was safe to proceed, which
would be accepted by a train.

Taking the UK train network as an example we look at
the likelihood of a collision to occur, required to perform the
attack. We find that due to current data speeds and session
lengths, this is very unlikely for a single train. However,
if EuroRadio was used to transfer larger amounts of data
(for instance, transmitting train diagnostic data) it could be
more likely broken. We go on to consider an attacker that
is capable of monitoring the entire ERTMS backbone of a
country the size of the UK and find that, when monitoring
the network for 45 days, an attacker has a 1% chance of
observing the collision needed to be able to take control of a
train. We present a number of mitigations, both short-term
and long-term based, against the presented attack.

In summary, our main contributions are as follows:

e Security analysis of cryptography used in ERTMS.

We perform a security analysis of the cryptography
implemented in each layer of the ERTMS standard
(GSM-R, EuroRadio and Application Layer protocol).

e A message forging attack against the EuroRadio
protocol. We implement an attack whereby a mes-
sage can be forged to match a valid MAC by exploiting
several limitations of the EuroRadio MAC algorithm,
and weaknesses in the Application Layer protocol.

e Mitigation and fixes. We assess potential mitiga-
tions and fixes to the attack discovered, and propose
alternative MAC algorithms suitable for use in Euro-
Radio.

In the next section, we provide an overview of the ERTMS
system at a high level, and in Section 4, we describe how it
is possible to retrieve one of the keys used in the EuroRadio
MAC algorithm. In Section 5, we show how it is possible to
create valid MACs for train control messages by an unau-
thorised party. The implementation of the MAC collision
and DES key recovery methods is presented in Section 6.
We then discuss the time needed to find the collisions re-
quired for our attack in Section 7, discussing fixes to the un-
derlying protocols, analysis of their collision resistance and
performance impact in Section 8, concluding in Section 9.

Related work. The EuroRadio MAC is similar to ISO
9797-1 MAC Algorithm 3 [13]. Mitchell [17] and Preneel et
al. [21, 12] have previously analysed the ISO 9797-1 MAC Al-
gorithm 3 design and found collision-based key recovery at-
tacks, requiring 22> known plaintext-MAC pairs and 3 - 26
offline operations. The EuroRadio MAC replaces the use of
two key 3DES in ISO 9797-1 MAC Algorithm 3 with the use
of three distinct keys, so these attacks are no longer feasi-
ble. Franekova et al. [8, 9], discuss similar attacks against
the EuroRadio MAC, however the use of 3DES means that
the attacks they discuss will not work in practice.

Pépin and Vigliotti [18] discuss the cryptographic mech-
anisms used in ERTMS key distribution, consider standard
attacks against 3DES, such as a related-key attack and quan-
tify the cost and resources required to break 3DES, which

Application layer ’ Type | Length I Time-stamp [data) Padding
EuroRadio ’ Type | Direction I MAC ‘
GSM-R ’ GSM-R header I GSM-R footer

Figure 1: Communication layers in ERTMS. The
Application layer contains the train signalling pro-
tocol with ETCS Application Messages. This pro-
tocol is encapsulated in EuroRadio, which provides
authentication and integrity verification for the ap-
plication layer messages through a M AC. EuroRadio
is finally encapsulated in a GSM-R transport pro-
tocol which provides encryption through the A5/1
GSM cipher.

currently is not practical. As far as we are aware, our paper
presents the first feasible attack against the cryptography
used by ERTMS.

At a more abstract level, De Ruiter et al. [6] present a
formal analysis of the security of the EuroRadio key estab-
lishment protocols, however they abstract away from the
cryptographic details. Bloomfield et al. [3] provide a high-
level security analysis of ERTMS, but did not find the vul-
nerability in the EuroRadio MAC presented in this paper.

2. ERTMS OVERVIEW

In this section, we present a high-level overview of the
communication systems in ERTMS, focussing on some of
the more complex components and provide context to the
functioning of ERTMS.

Within ERTMS, two important components are Radio
Block Centres (RBCs) and balises.

RBCs are entities which are responsible for trains in a
specific area. They take care of the sending and receiving of
signalling and train control information to and from trains
under their control. A single RBC is typically responsible
for a geographical radius of approximately 70 kilometres?.
Every RBC is connected to a fixed network in order to hand
over trains to the next RBC when a train leaves its area of
control. Trains are authorised to operate on particular sec-
tions of track using Movement Authority (MA) commands.
These are Application Layer messages which contain rele-
vant information sent from the RBCs to the trains. They
include details such as, for example, the maximum speed
a train may operate at and the distance that the train is
allowed to move under this command.

The RBC determines the positions of the trains in its
area through position reports sent by the trains. Based
on this information, signalling commands are provided, if
the track ahead is clear. The train determines its position
through balises, RFID-like units which are embedded into
the trackbed, typically in pairs. As a train passes over a
‘balise group’, it may then determine the direction of travel,
and relevant data is emitted to the train, for example, line
speed limits, distance to the next balise group, balise group

http://old.fel.zcu.cz/Data/documents/sem_de_2008/
AnsaldoSTS_08.pdf

ID and other appropriate operational information such as
track gradient and profile.

Communication between the various components of the
trackside infrastructure is specified in the ERTMS standard.
However, it should be noted that ERTMS, whilst interoper-
able, does not have a requirement for open operation within
the signalling subsystems, which may be proprietary.

Currently, there are three operational levels to ERTMS:

e Level 1, is simply an overlay to the existing national
signalling systems. Balises may optionally be used to
provide movement authorities to trains operating on
equipped lines. Lineside signals at this level remain
mandatory, dependent on the national system in place.

e Level 2 removes the need for lineside signals, where
balises at this level provide only static data, including
position data. Movement authorities are provided to
the train over GSM-R by the trackside RBC. Lineside
signals may optionally be retained, however, are not
mandatory.

e Level 8 uses a similar principle to Level 2, however
integrity of safe operation is solely controlled through
onboard means (i.e. track-based detection equipment
is no longer required), therefore, allowing moving block
operation of the trains, to increase utilisation of previ-
ously constrained capacity on the rail network.

2.1 GSM-R

GSM-R is the lowest level communication protocol used
in ERTMS between the train and trackside [11, 10]. How-
ever, it is not used for communications between trains and
balises. Based on the GSM Mobile Communications Stan-
dard®, GSM-R uses different frequency ranges based on na-
tional spectrum availability, and provides additional rail-
specific functionality. The additional functionality includes
support for multi-party communication between drivers, emer-
gency calling functionality, and priority-based pre-emption
(i.e. active calls may be terminated if a higher priority call is
received). ERTMS command and control messages are sent
at the highest priority in GSM-R, and cannot be pre-empted.
In comparison to the cell-based GSM standard, GSM-R uses
an alternative network cell layout, where base stations are
located along, or near railway lines, and an overlap is pro-
vided to ensure redundancy should one cell fail.

In the United Kingdom, a nationwide rollout of GSM-
R for voice was completed by the Infrastructure Manager,
Network Rail in 2014 to replace the outdated Cab Secure
Radio system, with GSM-R data support rolled out on the
Cambrian line in 2010 during the rollout of ERTMS on the
line.

Cryptography used in GSM-R. GSM-R uses the A5
suite of cryptographic ciphers, more specifically A5/1, a
stream cipher based on Linear Feedback Shift Registers (LF-
SRs). Optionally, the block cipher, A5/3, may be supported.
These ciphers are used for encryption of the communication
between mobile stations (e.g. trains and handheld devices)
and a GSM-R Base Station, providing confidentiality dur-
ing transmission. Mobile handsets and devices are authen-
ticated onto the network, however, the base station is never
authenticated to the handset.

3http://www.etsi.org/technologies-clusters/technologies/
mobile/gsm

mi mz Mn—1 Mp,

’DESM

’DESM

H, Ho

DESy3

MAC

Figure 2: The MAC algorithm used by EuroRadio
is comprised of n — 1 rounds of DES followed by a
final round of 3DES.

2.2 EuroRadio

The EuroRadio protocol is a middle layer protocol that
sits between the GSM-R and Application Layer protocols,
providing authentication and integrity verification for mes-
sages sent and received between the train and backend. Euro-
Radio’s main purpose is to provide guarantees that messages
received are authentic, by adding cryptographic MACs. It
relies on GSM-R to provide encryption between the train
and mobile base station. EuroRadio includes provisions for
an algorithm negotiation phase during the handshake, how-
ever, currently there is only one option for this.

The message authentication algorithm used is based on
the ISO 9797-1 MAC Algorithm 3 (also known as ANSI
X9.19 Optional Procedure 1) [23, 13, 1]. This algorithm
computes a message’s MAC using a combination of the DES
and 3DES ciphers by dividing a message into n blocks of 64
bits, padded appropriately, which are fed into a CBC circuit
which uses DES for the first (n — 1) blocks of a EuroRadio
payload and 3DES for the final block of this payload (see
Figure 2). The MAC is computed on the length of the entire
message, the ETCS ID of the recipient, the message being
sent and optional padding to ensure appropriate length for
the MAC computation [23]. The prefix consists of the mes-
sage length and recipient ETCS ID, which is 40 bits long.

The MAC algorithm used in EuroRadio uses three dis-
tinct keys in the final 3DES computation, whereas the ISO-
specified algorithm uses only two keys in the final round.
EuroRadio uses Padding Method 1, specified in ISO 9797:
Os are used as padding such that the size of the data be-
comes a multiple of the block size. If the data is already a
multiple of the block size, no padding is added.

The keys used by EuroRadio to generate the MACs are
session keys, derived from a pre-shared 3DES key and nonces
exchanged between the parties during the protocol hand-
shake phase.

In addition to ensuring validity and integrity of messages
sent to and from a train and backend equipment, this layer
offers the ability to set the priority of messages to either ‘nor-
mal’ or ‘high’. All messages which have a ‘normal’ priority
set, must have a MAC computed and added to the payload.
‘High’ priority messages do not contain a MAC and bypass
verification by the EuroRadio layer but can only be used to
send a very restricted set of commands, such as emergency
stop messages.

2.3 Application layer protocol

Once mutual party authentication in EuroRadio has com-
pleted, the train and trackside equipment can start to ex-
change data using the Application Layer protocol. This pro-
tocol is used to specify messages used for communication
between train and trackside. A number of message types
are defined in the ERTMS Standard [7].

Messages contain a header, which may be dependent on
whether the message was generated by a train or trackside
equipment. Messages will additionally contain a timestamp,
indicating the time at which the message was sent. This
time, however, is relative to the train (i.e. a counter) and is
not represented by a universally-set time source, e.g. UTC.
After authentication, the trackside equipment will synchro-
nise its clock upon receipt of the first message from the train.
The EuroRadio and Application Layer protocols have pre-
viously been formally analysed [6], where it was shown that
while both layers prevent an attacker from learning the se-
cret key, there are flaws in the protocol, for instance allowing
unauthenticated ‘Unconditional Emergency Stop’ messages
being sent by an attacker. There is no existing work to our
knowledge, however, which attempts to fuzz the EuroRadio
or Application Layer protocols at this time.

Typically, messages sent from train to trackside have the
following format:

other
(opt.)

padding
(opt.)

msg | msg
type| length

time- | train| pos.
stamp | ID report

Similarly, a message sent from the trackside to the train will
typically have this format:

other
(opt.)

msg | msg

time- ack LRBG
type| length ’

stamp 1D

padding
(opt.)

Both messages contain their respective type, length and
relative timestamp. Messages sent by the train contain a
position report and, dependent on the message being sent,
additional data is formatted in packets, as prescribed in [7].
The position report contains the distance and direction trav-
elled respective to the Last Relevant Balise Group (LRBG),
an upper and lower interval based on some tolerance for
the odometer onboard, and the LRBG’s location accuracy,
which is part of data received from the balises. To ensure
the message has a whole byte length, the message may be
optionally padded with ‘0’.

Emergency messages.

Messages may carry a priority marker, where emergency
messages, set as ‘high’ priority, are treated differently to
other types of message. As a result, most of the integrity
and authentication verification that takes place within Euro-
Radio is bypassed where the message may be immediately
passed up to the Application Layer. This may only take
place once an authenticated session is established. Cur-
rently, only two message types may be sent with ‘high’ pri-
ority: unconditional emergency stop and conditional emer-
gency stop [7]. All emergency stop messages must be ac-
knowledged by the train, where a different message type is
used, rather than the standard acknowledgement message.
Acknowledgements and revocations for emergency stops, how-
ever, are not sent as ‘high’ priority data, and must satisfy
any verification that takes place in the EuroRadio layer.

3. EURORADIO ATTACK ROADMAP

This section will provide an outline of our attack on ERTMS
to forge train control messages, where we present known
vulnerabilities and show how the attack can be deployed.
Whilst the attack mainly relies on breaking the cryptographic
implementation of the MAC in EuroRadio, we might also
need to circumvent the security of GSM-R. This can easily
be done using commercial off-the-shelf (COTS) equipment,
for example the $100 HackRF and NVIDIA GTX Titan X
GPU for $1,400.

The stages of the attack presented in this paper are:

Obtain unencrypted GSM-R traffic

Observe a collision in the EuroRadio MAC
Recover the first of the three 3DES keys, k1

Forge an Movement Authority message and send it

Obtaining and Decrypting GSM-R traffic. The GSM-
R protocol uses the same cryptographic mechanisms as GSM
to protect messages from tampering and eavesdropping. There-
fore, any vulnerability that exists against the current GSM
standard may be exploitable within GSM-R as well. A chan-
nel jamming attack using COTS equipment would affect all
operations within range of the equipment for ERTMS. A
more sophisticated attack would be to intercept communi-
cations in order to eavesdrop, or, insert messages into the
communications channel. Inserted messages could cause a
train to stop for an unpredictable amount of time to some-
thing more significant, for example, allowing a train to en-
ter an unsafe situation e.g. allowing two trains to occupy
the same section of track. Messages sent over GSM only
provide authentication that the communicating party also
possesses the A5 key being used for encryption, and not
that the message being conveyed is actually from a genuine,
honest entity.

The weakness of GSM encryption has been heavily eval-
uated, where recently, it was shown that the A5/1 cipher
used in both GSM and GSM-R could be broken in as lit-
tle as 9 seconds using commodity hardware [16]. For this a
time-memory trade-off attack was used, with a probability
for success of 81%. The setup time for this attack, how-
ever, was approximately two months, producing tables that
may be reused over different attacks. An alternative is the
use of rainbow tables, used by Nohl and others [15, 22, 14],
requiring approximately 1.6TB of storage capacity.

An export variant of A5/1, A5/2, was also shown to be
weak and is vulnerable to real-time attacks, which can break
the cipher in less than a second [2, 19]. Barkan et al. [2]
describe a method to perform a man-in-the-middle attack,
which forces the GSM protocol to fall back to the A5/2
cipher, allowing real-time attacks to be carried out. As the
key used for the A5/2 cipher is usually the same as the one
used by the A5/1 cipher, this provides a means to attack
the A5/1 cipher. Once the A5 key has been established, it
is then possible to recover traffic sent over the GSM-R link,
including train control messages.

Another form of attack is through so-called ‘IMSI Catch-
ers’ [4], where the mobile station is tricked into connecting
to a dishonest base station in two phases. The first phase
is to obtain the TMSI of the victim train, known as ‘Iden-
tification’. Whilst train operating timetables and (in the
United Kingdom) train positions are publicly available, the
TSMI and some ERTMS values (for example train ID) are
not publicly documented. In the second phase, ‘Camping’,

the attacker captures traffic between the train and trackside
infrastructure where the A5/1 key is then obtained.

The attacker then controls all traffic through to and from
the mobile station.

Recovering ki from the EuroRadio MAC algorithm.
Assuming that the attacker has access to the communication
between the train and the backend, it is now a matter of
observing two messages which have the same MAC at the
EuroRadio layer.

The current EuroRadio MAC generation and verification
process depends on the DES and 3DES encryption ciphers.
The way the DES cipher is used in the EuroRadio MAC
algorithm makes it likely for collisions to occur due to its
small block sizes (i.e. 64 bits) [20].

In a well designed protocol, the existence of a collision
would not lead to a vulnerability, however we show in Sec-
tion 4 that flaws in the MAC combined with the short key-
length of DES, makes it susceptible to successful brute-force
attacks on k.

Forging Movement Authority messages. Finding just
one of the three DES keys would not normally lead to an
attack against a secure cryptographic system, however we
show in Section 5 that additional flaws in EuroRadio allow
us to create a forged message that has the same MAC as an
observed valid message, using just k1.

ERTMS messages from trackside to the train can include
optional packets, where one of these can be used to send a
text message, which is displayed to the driver. This packet
also specifies the conditions under which the message should
be displayed. This means that random bytes may be in-
cluded in a message. An attacker may take advantage of this
to construct a properly-formatted application layer message
which would be accepted by the train. Additionally, this
message can be designed by the attacker such that it will
not be displayed, thus, the driver is not aware of the mes-
sage having been received by the train.

4. EURORADIO KEY RECOVERY

In this section we will present a method to recover ki, one
of the three keys used by the MAC algorithm in the Euro-
Radio protocol. As stated before, our attack leverages the
small block size of the DES and 3DES ciphers and relies on
the observation of a MAC collision. In Section 5, we will go
on to show how this key, together with a weakness in the
Application Layer protocol, can be used to forge valid Euro-
Radio messages. Our method of recovering ki exploits two
limitations: (1) if two messages have the same EuroRadio
MAC then the input into the final 3DES block is identical;
and (2) only k1 is used for the single DES rounds and can
be brute-forced.

As described in Section 3, EuroRadio uses a combination
of the DES and 3DES ciphers, in a mode similar to CBC, to
compute the MAC for an Application Layer protocol mes-
sage m as follows (see also Figure 2). First, the message m
is split into 64 bit blocks, m = (m1,...,myn). If the last
block m,, is not 64 bits long it is padded with 0s. Then, for
each block m;, i € {1,...,n — 1}, H; is computed as:

H; = DESy, (Hi_1 ®m;) (1)

where Ho = 0 and H,—1 & m,; is the result of the XOR
operation on H;_1 and m;. The final MAC of the message

Ma, Masy May_1 May,

Y H" v Y
D —® ~D
v v v
’ DESk1 ’ DESk1 ’ DESk1 ’ 3DES ‘
HIna H;n,(1 . H:{nfl
3DES(H,'", ® ma,) =
3DES(H™ © my,)
H™ Hy™ my I
’ DESk1 ’ DESk1 ’ DESk1 ’ 3DES ‘
Y Y
D ® ©®
Y H™ X Y
My, My My, me,

Figure 3: Recovering the DES k; key using message
collisions.

is the result of the final 3DES encryption:
MAC(m) = 3DES}€1’1Q2’)€3 (Hn_l @mn) (2)

The likelihood of at least one MAC collision occurring
between two messages out of M observed (message, MAC)
pairs for N possible MAC values, is [5]:

M—-1 i
P11 0-)

_ e~ M(M-1)/(2N) 3)

~
~

N

In the case of DES and 3DES N = 254,

We argue that, for rail infrastructure, a 1% probability of
compromise is significant and using Equation (3) the number
of (message, MAC) pairs needed to detect a collision with a
probability of 1% is M = 6.1x10%. We discuss the feasibility
of collecting this data in Section 7.

Once a collision is found between two messages m, and
my, consisting of n and [blocks respectively, we know that
the input to the 3DES functions is identical for both mes-
sages (see Figure 3), namely:

1
1\ M(M-1)/2
(1-%)

Hy' @ ma, = H"y ® my, (4)

We can use this information to perform a brute-force search
for k1. Both initial input messages m, and m; are known,
so we can compute H,'% and H;"Y for every possible key
ki. If we find k7 for which Eq. (4) holds then we have a
possible candidate for key k1. We discuss the time it takes
to perform this brute-force attack in Section 6.

Example. For n =1 = 3, Eq. (4) becomes H"* & mq, =
Hy"™ & myp,. We can expand this to DESk, (H{** & ma,) ®
Maz = DESk, (H™ @ mp,) @ mp,. The final expansion is:
DESk, (DESk, (Mma,) © May) ® Ma,
= DESk, (DESk, (ms,) & m,) & miy

As we know ma,, May, Masz, Mb, , My, and my, the only un-

Variable %}flr:g)th Description Example

Message 146 (Acknowledgement)

NID_MESSAGE 8 Message type 146 (Acknowledgement)
L_MESSAGE 10 Length of message (bytes) 10

T_TRAIN 32 Train timestamp 53088208
NID_ENGINE 24 Train ID 1

T_TRAIN 32 Timestamp being acknowledged 53088178

Table 1: Example of an Acknowledgement message sent by a train

known in this equality is k1, therefore we may use this to
find the key with a brute force guessing attack.

5. FORGING TRAIN CONTROL
MESSAGES

In this section, we present our Application Layer message
forging attack. The attack relies on several weaknesses in
the ERTMS stack, allowing us to create Application Layer
messages which have MACs identical to the ones of previ-
ously observed valid messages. Our attack does not require
complete knowledge of all three keys used in the EuroRadio
MAC algorithm, but only requires key k1, used for the single
DES cipher, to be known. In Section 4, we described how
k1 can be recovered when a MAC collision is observed.

For this attack, we assume that we have seen a valid mes-
sage My = (Mo, , - .., M,) and the corresponding MAC, and
we have obtained the key ki. First, we show how a different
message can be forged that has the same MAC as m,.

Assuming we want to get a valid MAC for the forged mes-
sage my = (my,,..., my,) # m,. Based on Equation (2)
MAC (my) will be identical to M AC(m.,) only if:

H:Ln:)l 2] My, = HlTijl D mfl (5)

Using k1 we can compute valid intermediate MACs H for
any message up to the last-but-one block (using Equation (1)),
so we can compute H™, and H,"’. We also have knowledge
of m,,, as part of the observed message. Therefore we can
compute H™, @m,, and H," &my,, however, with a very
high probability these will not be equal (Figure 4(a)).

In order to get a valid MAC for the message ms we extend
it with one additional block my, ,, (see Figure 4(b)):

mp,, =me, ® H ' @ H™ (6)

This block will force the input to the 3DES encryption in the
MAC calculation to be the same for the new, forged message
and the old, observed message. Therefore, even though we
do not know the keys k2 and ks we know that this new
message will have the same MAC as m,. The crafted block
my,,, will, however, contain random data which most likely
would not pass any message verification at the Application
Layer. We now extend this approach to give us more control
over the data we need to add to the message, and make it
into an acceptable ERTMS message.

To be able to create a message that will be accepted by
the train, we will leverage an additional feature of the Appli-
cation Layer protocol, namely the ability to include optional
data packets into the message. For the purposes of our at-
tack we will include the packet for sending plaintext mes-
sages into the forged message. This packet is used to send
messages of up to 255 characters that will be displayed on

the driver’s console. Intuitively, we want the random data
contained in block my,_ , to be the text message included
in the additional packet. We make use of conditions that
can be included to indicate when the message should be dis-
played to the driver. These conditions can be chosen such
that the message will probably never be displayed.

According to the specification, the message in the text
message packet needs to conform to the ISO 8859-1 encoding
standard, which includes ASCII. Tt is not specified whether
this is checked when receiving the message, when it is dis-
played or even at all. If the encoding is not checked, at
this point, we can use the message for the random block ex-
actly as described before. However, below we will assume
the encoding is checked when the message is received and
we show how to construct a forged message that includes a
valid encoded text message.

In order to use the technique described previously to con-
struct a forged message, we include a text message of 16
characters such that we have control over the last two full
blocks in the MAC computation (see Figure 4(c)). The be-
ginning of the message is again denoted by my = (my,, ...
Two additional parts, that form the actual text message,
will be appended in blocks my, , and my,_,. The addition
of two blocks gives us enough flexibility in the plaintext to
allow these blocks to conform to the ISO 8859-1 standard.

We start by computing the input to the 3DES block for the
original message (H,'", @ m,,) and the intermediate MAC
of the fixed part of the forged message (Hlmf) using k1. We
then randomly generate the first half of the text message
in the correct encoding, including it in block my, . We
continue by computing the value of the last message block
my,,,, such that m; has the same MAC as the original

message, using Eq. (6) and H;:{ = DESp1(my, © H™):

_ m mpy
My o = My, O H,” & Hz+1

We then check if my,, is a valid ISO 8859-1 encoded mes-
sage. If this is not the case, we start over by generating
another random first half of the text message my, , and see
if this results in a correctly encoded block my, ,. Once we
have a correctly encoded my,,, we have our forged message
with the correctly encoded text message consisting of my,_,
and my_,. In the next section we give an example of a
forged Movement Authority message.

To determine the probability that we find a correctly en-
coded my,_ ,, we assume its distribution is uniform. This
should be the case due to the DES encryption used to com-
pute H;j_fl As 65 byte values are not defined in ISO 8859-1,
the probability that a random string of 8 bytes is correctly
encoded according to ISO 8859-1 is:

Using the assumption that DES is a pseudo-random func-
tion, we therefore need 10 tries on average to find a correctly

smy,).

Length

Variable (bits) Description Example
Message 3 (Movement Authority)
NID_MESSAGE 8 Message type 3 (Movement Authority)
L_MESSAGE 10 Length of message (bytes) 51
T_TRAIN 32 Train timestamp 1327095428
M_ACK 1 Acknowledgement required 0 (AC knowledgement not
required)
NID_LRBG 24 ID of Last Relevant Balise Group 1
Packet 15 (Movement Authority)
NID_PACKET 8 Packet ID i1t5y) (Movement - Author-
Q_DIR 2 Direction 2 (Both directions)
L_PACKET 13 Length of packet (bits) 113
Q-SCALE 2 Scale used for definition of resolution | 2 (10m scale)
V_EMA 7 Maximum speed 40 (200km/h)
T_EMA 10 Validity time 1023 (unlimited)
N_ITER 5 Number of iterations 0 (No iterations)
L_ENDSECTION 15 Length of section in MA 5000 (50000m)
Q_SECTIONTIMER 1 Section timeout Qualifier 0
Q_-ENDTIMER 1 Timer for end section in MA qualifier | 0 (No information)
Indicates whether a danger point ex- . .
Q-DANGERPOINT 1 ists or release speed is to be specified 0 (No information)
Indicates whether overlap exists or re- [1 (Overlap information
Q-OVERLAP 1 lease speed is to be specified to follow)
Distance from overlap timer start to
D_STARTOL 15 ond of MA 0
T_OL 10 Validity period for overlap 0
D.OL 15 Distance from the end of the MA to 0
end of overlap
V_RELEASEOL 7 Release speed for overlap 126 (Use calculated on-

board speed)

Packet 72 (Plain Text Message)

NID_PACKET 8 Packet ID 72 (Plain Text Message)
QDIR 2 Direction 0 (Reverse)

L_PACKET 13 Length of packet (bits) 220

Q_SCALE 2 Scale used for definition of resolution | 2 (10m)
Q_TEXTCLASS 2 Class of Message to be displayed 0 (Auxiliary)

Q TEXTDISPLAY 1 Display message if one/all events ful- | 0 (as soon as one event

filled (start/end events relation)

fulfilled)

D_TEXTDISPLAY 15

Distance at which text is displayed
(start event)

32767 (327670m)

M_MODETEXTDISPLAY | 4

Operating mode for text display (start
event)

9 (System Failure)

Operating level for text display (start

M_LEVELTEXTDISPLAY| 3 0 (Level 0)
event)

L. TEXTDISPLAY 15 Length the text is to be displayed for 0 (Om)
(end event)

T TEXTDISPLAY 10 Time the text is to be displayed for 0 (0 seconds)

(end event)

M_MODETEXTDISPLAY | 4

Operating mode for text display (end
event)

9 (System Failure)

M_LEVELTEXTDISPLAY| 3

Operating level for text display (end
event)

0 (Level 0)

Q_TEXTCONFIRM 2 Confirmation required 0 (Not required)
L_TEXT 8 Length of text message 16 (16 chars)
X_TEXT variable | Contents of text message

Table 2: The structure of a Movement Authority message. The message contains a Movement Authority
packet and a Plain Text Message packet. We also show, as an example, the values we used in our forged
message.

My My My, My,

VR MAC(m,)
1
myY o oy
MAC (my)

T e
o mpmy,

my, my, myg_, my,

(a) Messages m, and m have different
MAC:s.

. m
my, © H™ @ H

(b) Messages my and my are made to have
the same MAC by adding block myp, =

My,

Y
3DES
MAC(m,) MAC (m,)
H™ MAC(my) o' H 'YL MAC(my)
3DES
. A
mp_y m M fiin
my,, =m,, ®H"™ o Y My, = me, & H" & HY

(C) A properly encoded Plain Text Message
requires two blocks mypy and mpy, ., to be
added. These blocks will be properly encoded
according ISO 8859-1 as described in Section
5.

Figure 4: Creating forged message m; by extending it with an additional block(s) to match the MAC of the

valid message m,.

encoded block and 50 tries to have a success rate of 99%. If

we limit ourselves to ASCII encoding, the probability drops
to (%)8 ~ 0.0004. In this case, we still only need 2780
tries on average to find a correctly ASCII encoded block.

6. PROOF OF CONCEPT

In this section, we present the implementation of our at-
tack and detail the process in which we identified collisions
and implemented the DES key recovery process.

As a message to forge, we use a potentially damaging
Movement Authority (MA) message with an attached Plain
Text Message (PTM) packet using the details outlined in Ta-
ble 2. This MA changes the maximum allowed train speed
to 200 km/h for almost 328 km. The values in the mes-
sage are chosen such that, by including optional variables,
the text message exactly lines up with the last two message
blocks in the computation of the MAC: a 40 bits prefix is
added by the MAC algorithm and the message header (75
bits) together with the MA packet (113 bits) and Plain Text
Message, without the actual text message, (92 bits) is 280
bits. This fixed part of the message is exactly contained in
the five message blocks, so the text to be displayed will start
at the beginning of the sixth block.

In order to find a MAC collision, we developed our own
program to generate ERTMS messages. One of the most
common messages sent between train and trackside is mes-
sage 146: the Acknowledgement Message (see Table 1) to
confirm the receipt of ‘normal’ priority messages. Messages
sent from the backend to a train can request acknowledge-
ments to be provided. This acknowledgement message con-
tains the current timestamp, based on the train clock, as
well as the timestamp for the message being acknowledged.
Whilst the timestamp is 32 bits in length, they are relative to
the onboard clock, wrapping around by design and therefore
is not an issue, as is it is unlikely to happen. We computed
the MAC value for many acknowledgement messages. using
fixed keys, and looked for collisions. We parameterise the
timestamps, where a defined offset was used between the
timestamp being acknowledged and current time. This off-
set was specified to be intervals of 10, 20 and 30 ms, that is,
the simulated train would acknowledge messages within the

defined offset period. The remainder of the message (ETCS
ID and Message ID) were left static, to simulate one train
acknowledging all messages.

We implemented this algorithm in Java and generated ap-
proximately 12.9 billion (3 * (232 — 1)) values. Equation 3,
tells us that this leads to a 99.999% chance of a collision.

Collisions were detected using the standard Unix utilities
sort and uniq. The system used to generate the MACs
contained an Intel Xeon E5-2420 CPU, running at 2.2GHz.
The complete process finished within two days, resulting in
the discovery of 8 collisions, e.g. the two acknowledgement
messages:

00120000020A9203A2105E0480000062105DFDO000000000
00120000020A9203AAE360078000006AE360000000000000

both have the same intermediate MAC H,,:
80B7557F31566DBB

for k1 = 01020407080BODOE. The other collisions are given
in Appendix A. Details on the probabilities of a collision
and the time needed for an attacker to find a collision are
discussed in the next section.

Verifying a single key guess using these collisions requires
six DES encryptions (three for each message to calculate
the inputs to the 3DES block). The fastest DES cracker we
could find in the literature was

the RIVYERA, which uses dedicated hardware and takes
slightly less than a day to crack a single DES key?. The cost
of building the system is approximately $140,000.

This is too slow to break the key in time to attack a train,
so we investigate the cost and speed of cracking DES us-
ing Amazon’s cloud services. We rented an Amazon EC2
instance with 16 NVIDIA Tesla K80 GPUs, (p2.16xlarge)
and used the state of the art password cracker hashcat® to
benchmark the number of possible DES operations per sec-
ond. Scaling this up to many machines we found that we
could brute-force the k1 DES key in 30 minutes for $48,960,

“https://www.voltage.com /breach /the-state-of-the-art-in-
key-cracking/
®https:/ /hashcat.net/

Prob of attack

660 —/ 2000

Days of attack 1140

(a) Days of attack vs Sessions per day vs Prob of attack

Sessions
980 per day

0.06 T

|
0.05 |

=4
>
b4

0.03 |

Prob of attack

0.01 |~

10 I
Session length (hours) 12 14

(b) Days of attack vs Sessions per day vs Prob of attack

Figure 5: Attack probabilities for a range of different session lengths and data speeds

and even faster for proportionally more money. A full break-
down of this calculation, and the benchmarking, is provided
in Appendix B.

Using the collision above, we constructed a forged message
with the same MAC. We used a Python script to create a
forged message containing the Movement Authority, given
in Table 2. Given k1, this script finds a valid text message
using the approach discussed in Section 5. It can find valid
text messages either for the full ISO 8859-1 encoding or only
ASCII. In the case of the messages above this process took
0.209s on a normal laptop containing an Intel Core i7-4550U
CPU to give us the following ASCII encoded text to com-
plete our forged message:

Z| 1MBY,<w*RRf) 8n/
This leads to the ERTMS message:

030cd3c677a100000021£01c651££809c4080000000007e4801
b90£££d2000000120105a7c314d42253c772a52526629386e2f

which we constructed without the second and third DES
keys, and has the same intermediate MAC as the acknowl-
edge messages above (80B7557F31566DBB), and therefore also
the same final MAC. This forged movement authority mes-
sage would now be accepted by a train, and is broken down
in Table 2.

We are making the Python scripts available anonymously.
Please see the link in the footnote®.

When the attack is deployed, the attacker would need to
actively jam the GSM-R uplink to ensure that acknowledge-
ment messages sent by the train are not received by the
RBC. Likewise, once deployed, the downlink would have to
be jammed so that the train does not receive any conflicting
movement authorities from the RBC which could shorten it.
The RBC, may therefore, through interlocking identify two
trains occupying the same section of track, and attempt to
intervene by issuing an emergency stop or modified move-
ment authority to the ‘victim’ train. That said, an attacker
who jams the GSM reception would prevent the RBC com-
mands being received. As the frequencies are the same for
GSM-R voice, it would also prevent the signalling centres
contacting the train driver via voice. For a fixed attacker

Shttp://pastebin.com/Ge6gM1Qm

at an RBC, or base station, it would be a case of dropping
the messages which could restrict the movement authority
or make the train go against the attacker’s wishes.

7. DATA CAPTURE

In this section, we show how much data an attacker would
need to see, how long they would need to collect traffic for,
and what the probability of a successful attack would be.
In order to find a collision, traffic between the train and
backend needs to be captured; one way to collect the traffic
needed to find a collision would be to intercept GSM-R data
between a train and mobile base station. Alternatively, data
could be captured from the network infrastructure which
connects the base stations, RBCs and control centres. Cap-
turing data from this network infrastructure leads to much
more data and so a high chance of finding a collision, but
the network is more difficult to compromise. We consider
both of these possible attacks below.

7.1 Monitoring a single train

In this subsection, we consider an attacker who monitors
a single train, perhaps while travelling on it. The GSM
protocol has been shown to be weak against an attacker,
given sufficient pre-computation [16], therefore the attacker
can easily decrypt this.

We consider a 1% chance of an attacker taking over a
train as unacceptable, and in Section 5, we showed that
an attacker gets this chance of a collision from 6.1 x 10®
messages. Assuming an average message length of 32 bytes
this would require 19.5 GB of data. GSM-R has a maximum
data speed of 14Kbps, however, this connection is not always
used at full capacity. If we assumed that a train sends data
at 10Kbps, it would take a train 23 days to send 19.5GB.
We note that there is nothing in any of the specification that
enforces a limited life on a session key; in practice the session
key is renegotiated whenever a train starts up, or when it
starts communicating with a new RBC, therefore it seems
unlikely that a single train will currently use a session key
long enough for this to become a problem.

Prob of attack
=1
N
t

3x10"6

2x10%6
o 2.5x10%6
106 @ 2x10%6
Number 151076
of Sessions 0 3x1075 Messages per session

Figure 6: Attack probabilities for the number of
messages and sessions observed

7.2 Multi-session traffic capture

Rather than monitoring a single train, an attacker could
monitor a large number of trains at the same time, by for
instance, tapping into the wired connections between the
GSM-R base stations and the RBCs. These cables are typ-
ically buried in the ground or carried overhead along train
tracks, therefore, accessing them on mass would involved
considerable time and effort for an attacker, but would be
possible. Base stations are located in open spaces, unlike
public GSM stations, where unauthorised access to these
may not be detected. Access to the underlying infrastruc-
ture, such as controllers may be carried out by an inside
attacker, however.

We can adapt Eq. (3) to give us the probability P of find-
ing one of more collisions in S sessions each of which contains
M messages:

M-1 i s
P=1- (1 - —)
E N (7)
~] _ e—MOM-1):5/(2N)

We plot the range of possible values for this in Figure 6.
To make this more concrete, we consider a country the size
of the UK which has in the region of 4000 trains running
everyday. We additionally assume an average data speed of
10Kbps, sessions of 10 hours and message sizes of 32 bytes.
The data speed, session lengths and message size then give
us the number of messages per session and the number of
session an attacker can monitor would then be 4000 times
the number of days they were willing to wait. Using Eq. 7
we calculate that an attacker would have a 1% chance to find
a collision, and so take control of a train, within 45 days and
a 50% chance in 8 years. These figures suggest that, while
difficult and expensive to pull off, this attack is within the
realm of possibility.

Our figures are estimates of typical usage — high speed
trains that move between RBC areas may have shorter ses-
sions and local trains that spend a whole day in an area may
have longer sessions. Data may be sent at a higher or lower
speed and the number of trains in service will continue to
grow. Figures 5(a) and 5(b) show how the likelihood of an
attack varies as we change some of these estimates. Fig-
ure 5(a) shows how the success probability grows for an at-
tacker that is willing to wait longer and for different sizes

of train network. Figure 5(b) assumes a 45 day attack and
shows how the success probability changes with the session
length and data speed. We note that for short sessions and
low data speeds the protocol is safe, however this quickly
becomes unsafe as the amount of data send increases. We
discuss what is a safe limit to the data sent over EuroRadio
in the next section.

As discussed in section 2.1, GSM Capture is not a new
concept, however, we outline an example process which may
be undertaken. We use the HackRF software-defined radio,
airprobe and gnuradio (Fig. 7) Linux tools to capture
traffic on the Cambrian Line, an ERTMS Level 2-fitted line
on the North Wales coastline (see Appendix C). For other
software-defined radios, alternative tools, for example, Os-
mocomBB, may be used. Using the radio, the base station
frequency must be identified - the kalibrate tool scans for
GSM-R base stations, where airprobe can then capture on
that frequency and decode into Control Channel and en-
crypted traffic. The capture files can be passed to kraken to
retrieve the A5/1 key. The TMSI is exposed in the ‘Paging
Request’ (Fig. 8) messages which may then be used in the
input to establish the key. Another method, impersonating
an existing base station can be achieved through open-source
tools for example OpenBTS, OsmoBTS and Yate.

8. MITIGATIONS

In this section, we present the proposed mitigations that
reduce the exposure of this attack, as well as other pro-
posals to further enhance the security of train to trackside
communication for the future. Whilst recommendations to
promote and introduce immediate solutions may be given,
we also must consider the impact and cost to infrastruc-
ture manager and operators to implement such changes. We
consider the following mitigations, ranked in order of high-
est compatibility and lowest implementation cost to lowest
compatibility and highest implementation cost:

1. Restricting EuroRadio use in high-bandwidth Appli-
cations

2. Forcing sessions to be renegotiated often in order to
enstére that the probability of finding collisions is P <
107°.

3. Implementation of an alternative MAC Algorithm

4. Combining EuroRadio and Application Layers to pro-
vide a combined, secure message sending/receiving ser-
vice

Although EuroRadio currently is safe for use in current
ERTMS command and control applications against an at-
tacker that targets a single train, our recommendation is
that EuroRadio should not be considered for use in future
high-bandwidth applications, for example streaming appli-
cations, for example remote condition monitoring. High-
bandwidth applications reduce the time required to get col-
lisions (see Figure 6) and thus session key recovery becomes
more likely. As a result, the MAC algorithm in EuroRadio
should not be considered for such applications.

An alternative short-term solution is to force sessions to
be renegotiated by tearing down the existing session and
forcing a new key to be used. The threshold number of
messages M = 6.1 x 10® discussed in Section 4 assumes a
collision probability P = 1%. However, as previously stated,
this probability is to high. We consider P = 107° a more

Av Time impact

MAC algorithm tim% (ns) vs. EuroRadio | QCR
MAC (%)

EuroRadio MAC 10276.89] «
(current)
3DES Patch 13155.255 | 28% worse X
AES-256-CBC
MAC 8589.98 12% better v’
HMAC-SHA-256 | 4558.64 55% better v’

Table 3: Performance Summary of MAC Algorithms
under Assessment

acceptable probability [24]. Using Eq. (7) we can compute
the number of messages per session for the fixed probability
P as:
2N 1

Tl e
For N = 2% and S = 1825000 sessions, assuming an attacker
that can monitor 5000 sessions per day for 365 days, the
number of messages per session that result in a collision
probability of P = 107% is M = 4496. We recommend using
a counter that forces the session to be re-established once
this number of messages is reached.

For infrastructure managers and manufacturers, such a
bound could be enforced in a range of places: either at the
RBC where all trains coming into an area of control are
subject to this message count bound, or as an onboard soft-
ware update, although this limits the mitigation. Having
the bound enforced by the RBC is a stronger proposition,
as there are fewer operating in a country, reducing costs to
the infrastructure manager to implement, and can be built
and tested as a software update in a shorter timeframe than
updating onboard software. For the ‘enforcing’ entity, a
counter simply is maintained, in addition to the clock for
messages sent and received, incremented each time a mes-
sage is sent or received to or from a train. We recommend
counting the number of messages send and received from
the train, rather than relying on the existing clock, as one
no longer has to consider data speeds. This solution is fully
backwards-compatible with no identified limitations, where
the current EuroRadio specification already has support for
the train and RBC terminating sessions.

Another problem is that EuroRadio still relies on the se-
curity of the DES and 3DES ciphers. Whilst DES has been
shown to be feasibly broken, 3DES does not yet have a full
key recovery attack, however it is estimated that it will be
feasible to brute-force 3DES by 20307. Therefore, longer-
term solutions, like changing the MAC scheme, will require
significant changes to software and, for some ciphers, even
extending key length. For infrastructure managers, updat-
ing the derivation key on every train and RBC is not a simple
process, where all trains and RBCs must be updated at the
same time to support such changes. This would likely result
in significant implementation and deployment cost. While
we believe the current setup is no immediate threat to rail
infrastructure, these longer-term solutions should be consid-
ered as part of the ratification process of updated ERTMS
standards as alternative safety features.

As alternative MAC schemes, AES and HMAC-based MACs

were considered, where efficiency and long-term viability

"https://www.keylength.com/en/3/

were considered. Any proposed MAC changes should be
considered to be quantum resistant to prevent key recovery
in a ‘post-quantum world’. In order to evaluate the perfor-
mance impact and resistance to collisions, we carried out
the same collision detection code under the different MAC
algorithms. Where key size under proposed algorithms was
too short, the same prefix was used and extended with dis-
tinctly different bits. These computations were also timed
to measure relative performance against the current MAC
algorithm, which was used as a baseline. Our results are
given in Table 8.

We show that the impact of using a DES-based MAC al-
gorithm has a significant impact on the generation of the
MAC, compared to the proposed alternatives. The theo-
retical performance improvements, however, do not directly
translate to real-life functionality improvements. For exam-
ple, the train’s stopping distance is not significantly affected
by changing the MAC algorithm as the time to generate a
MAC under the current scheme can be quantified to be at
200km/h to be 0.05cm. Improvements, therefore are mini-
mal in terms of distance travelled.

Finally, if some ERTMS Specifications were to be com-
bined, the EuroRadio and Application Layers, which them-
selves provide independent defences, may be combined as a
unified layer which provides authenticity, integrity and re-
play protection. This, however, requires significant changes
to the underlying specifications to support this change, with
cost, development and ratification involved.

9. CONCLUSION

We have presented the results of our analysis of the Euro-
Radio MAC algorithm, the algorithm used to secure com-
munication between trains and backend equipment. On the
ERTMS stack EuroRadio provides the safety-critical func-
tion of message authentication. We assessed each layer to de-
termine potential weaknesses that could be exploited. This
allowed us to develop a key recovery attack by leveraging
collisions in the MAC for different messages. By recovering
one of the keys used in the generation of the MACs, it is then
possible to exploit cryptographic weaknesses in EuroRadio.
We combined this with a second vulnerability in the Appli-
cation Layer protocol to forge a Movement Authority with
a valid MAC. The forged messages would be accepted by a
train, potentially placing it in an unsafe situation. We have
discussed the risk this poses to train networks and we have
propose possible mitigations, such as restricting the number
of messages per session.

We have discussed our attack with Maria Grazia Vigliotti
at the UK’s Rail Safety and Standards Board (RSSB), and
Network Rail, they have agreed that EuroRadio is not safe to
be used with a transport protocol faster than GSM-R. They
also agree with the fact that monitoring the whole rail back-
bone is theoretically possible. However, they consider this
to be more difficult than breaking into a key management
centre and/or bribing train staff. RSSB has no objection to
us publishing our results.

Acknowledgements

Funding for this paper was provided by the UKs Centre for
the Protection of National Infrastructure (CPNI) and En-
gineering and Physical Sciences Research Council (EPSRC)
via the SCEPTICS: A SystematiC Evaluation Process for
Threats to Industrial Control Systems project.

10.

[1]

2]

[10]

[11]

[12]

13

[14]

REFERENCES

ANSI. ANSI X9.19:1998 Financial Institution Retail
Message Authentication. Technical report, ANSI,
1998.

E. Barkan, E. Biham, and N. Keller. Instant
ciphertext-only cryptanalysis of GSM encrypted
communication. In D. Boneh, editor, Advances in
Cryptology - CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 600-616. Springer
Berlin Heidelberg, 2003.

R. Bloomfield, R. Bloomfield, I. Gashi, and R. Stroud.

How secure is ERTMS? In F. Ortmeier and P. Daniel,
editors, Computer Safety, Reliability, and Security,
volume 7613 of Lecture Notes in Computer Science,
pages 247-258. Springer Berlin Heidelberg, 2012.

A. Dabrowski, N. Pianta, T. Klepp, M. Mulazzani,
and E. Weippl. Imsi-catch me if you can:
Imsi-catcher-catchers. In Proceedings of the 30th
Annual Computer Security Applications Conference,
ACSAC 14, pages 246255, New York, NY, USA,
2014. ACM.

A. DasGupta. The matching, birthday and the strong
birthday problem: a contemporary review. Journal of
Statistical Planning and Inference, 130(1):377-389,
2005.

J. de Ruiter, R. J. Thomas, and T. Chothia. A formal
security analysis of ERTMS train to trackside
protocols. In A. R. Thierry Lecomte, Ralf Pinger,
editor, Reliability, Safety and Security of Railway
Systems: Modelling, Analysis, Verification and
Certification. International Conference, Paris, France,
June 28-30, 2016, Proceedings, Lecture Notes in
Computer Science, 2016.

ERA. SUBSET-026: System requirements
specification, version 3.5.0. Technical report, 2015.

M. Franekova and P. Chrtiansky. Key Management
System in ETCS. Transport System Telematics, 2009.
M. Franekova, K. Rastocny, A. Janota, and

P. Chrtiansky. Safety Analysis of Cryptography
Mechanisms used in GSM for Railway. International
Journal of Engineering, 11(1):207-212, 2011.
http://annals.fih.upt.ro/pdf-full /2011 /ANNALS-
2011-1-34.pdf.

GSM-R Functional Group. EIRENE Functional
Requirements Specification, version 7.4.0. Technical
report, 2014.

GSM-R Functional Group. EIRENE System
Requirements Specification, version 15.4.0. Technical
report, 2014.

H. Handschuh and B. Preneel. Minding your MAC
algorithms. Information Security Bulletin,
9(6):213-221, 2004.

ISO/IEC. ISO/IEC 9797-1:2011 — Information
technology — Security techniques — Message
Authentication Codes (MACs) — Part 1: Mechanisms

using a block cipher. Technical report, ISO/IEC, 2011.

M. Kalenderi, D. Pnevmatikatos, I. Papaefstathiou,
and C. Manifavas. Breaking the GSM A5/1
cryptography algorithm with rainbow tables and
high-end FPGAS. In 22nd International Conference
on Field Programmable Logic and Applications (FPL),
pages 747-753. IEEE, 2012.

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]
23]

[24]

L. Karstensen. GSM A5/1 rainbow tables in Oslo,
Norway. Available:
https://lassekarstensen.wordpress.com/2013/08/08/
gsm-abl-rainbow-tables-in-oslo-norway/, 2015.
Online.

J. Lu, Z. Li, and M. Henricksen. Time-Memory
Trade-off Attack on the GSM A5/1 Stream Cipher
Using Commodity GPGPU. In 13th International
Conference on Applied Cryptography and Network
Security (ACNS 2015), 2015.

C. J. Mitchell. Key recovery attack on ANSI retail
MAC. Electronics Letters, 39(4):361-362, 2003.

F. Pépin and M. G. Vigliotti. Risk Assessment of the
8Des in ERTMS, pages 79-92. Springer International
Publishing, Cham, 2016.

S. Petrovic and A. Fuster-Sabater. CRYPTANALYSIS
OF THE A5/2 ALGORITHM. Cryptology ePrint
Archive, Report 2000/052, 2000.
http://eprint.iacr.org/.

B. Preneel and P. Van Oorschot. On the security of
iterated message authentication codes. Information
Theory, IEEE Transactions on, 45(1):188-199, Jan
1999.

B. Preneel and P. C. van Oorschot. Key recovery
attack on ANSI X9. 19 retail MAC. Electronics
Letters, 32(17):1568-1569, 1996.

SR Labs. Decrypting GSM phone calls. Available:
https://srlabs.de/decrypting_gsm/, 2010. Online.
UNISIG. SUBSET-037 - EuroRadio FIS, version 3.2.0.
Technical report, 2015.

J. Wolff. What is the value of preventing a fatality? In
T. Lewens, editor, Risk: Philosophical Perspectives.
Routledge, 2007.

APPENDIX

A.

COLLISIONS

As part of our analysis of collision resistance of the MAC
algorithm used in EuroRadio, we found 8 separate collisions
for the Acknowledgement Message (Message 146). This was
only for the intermediate MAC value (i.e. Hy), which is
sufficient to detect collisions, as the 3DES transformation is
deterministic. The collisions are shown in Table 4.

il}tAegn(eIg;a)te Plaintexts
365CAOE4D4901E85 00120000020A9203A2105E0480000062105DFF8000000000
00120000020A9203AAE360078000006AE360028000000000
410F1B9C2C09E958 00120000020A9203970598C5C00000570598C34000000000
00120000020A9203B04EA8D7C00000704EA8D54000000000
4BBDFBABD9757A38 00120000020A9203A9D9B5FDCO000069D9BSFB4000000000
00120000020A9203AC38CEEA8000006C38CEE58000000000
7A3D01D36BE88B21 001200000204920385CCD6F280000045CCDEEBO000000000
00120000020A920386E4CFBCC0000046E4CFB7C000000000
80B7557F31566DBB 00120000020A9203A2105E0480000062105DFD0000000000
00120000020A9203AAE360078000006AE360000000000000
A7TA3AD4FA4CED433 00120000020A9203A16580E0400000616580DDC0O00000000
00120000020A9203A34C8FAF400000634C8FAA4000000000
BE23849D77705C72 00120000020A920398952D5AC0000058952D534000000000
00120000020A9203B553FC648000007553FC5D0000000000
F813AEDSFE3D445F 00120000020A9203A16580E0400000616580DB4000000000
00120000020A9203A34C8FAF400000634C8FACC000000000

Table 4: Pairs of messages which result in the same
MAC under key ki1 = 01020407080BODOE

B. BENCHMARKING

The Amazon EC2 instance which was hired to perform the
hashcat benchmarking was a p2.16xlarge instance. This
type of instance is designed for high performance GPU com-
putation® and costs $14.40 per hour to use. This instance
comes with 64vCPUs, 734GiB of local RAM and, for our
setup, an 8GB SSD-backed storage facility on the same net-
work for minimal latency.

Each p2 instance is equipped with an NVIDIA Tesla K80
GPU, with 5000 CUDA cores, 24GB of GDDR5 RAM. Our
benchmarking instance was fitted with 16 K80 GPUs. At the
time of benchmarking, the latest version of NVIDIA GPU
Drivers and hashcat source were compiled and installed.

hashcat is optimised for OpenCL, allowing the GPUs to
be leveraged for GPU-accelerated computation, and using
the GPUs on board, our results are provided in the following
section.

hashcat results

hashcat supports a benchmarking mode, allowing it to state
the number of hashes, or values it is able to produce per
second. The argument set and results presented below are
broken down:
e -m 1500 : Message Type: descrypt, DES(Unix), Tradi-
tional DES
e -b: Benchmark Mode
e -w 4 : Workload Profile 4 — Extreme
e -powertune-enable : Enable automatic power tuning
option on GPU
We use the descrypt message type, as this is the clos-
est family of algorithm to simple DES encryption. descrypt
works by taking a password as a 56-bit key, taking a 64-bit
zeroed data input block, and encrypts this 25 times, where
the hash is the output of this process. Thus, we state that
the output speed from the 2.16xlarge instance has a 25x
factor improvement in speed, due to descrypt carrying out
25 rounds of DES encryption.

$ hashcat -m 1500 -b -w 4 --powertune-enable
hashcat (v3.10) starting in benchmark-mode...

OpenCL Platform #1: NVIDIA Corporation

- Device #1: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #2: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #3: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #4: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #5: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #6: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #7: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #8: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #9: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #10: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #11: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #12: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #13: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #14: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #15: Tesla K80, 2859/11439 MB allocatable, 13MCU
- Device #16: Tesla K80, 2859/11439 MB allocatable, 13MCU

Hashtype: descrypt, DES(Unix), Traditional DES

Speed.Dev.#1: 176.5 MH/s (482.39ms)
Speed.Dev.#2: 174.6 MH/s (482.68ms)
Speed.Dev.#3: 176.2 MH/s (483.11ms)
Speed.Dev.#4: 175.4 MH/s (485.09ms)

Shttps://aws.amazon.com/ec2/details/

Speed.Dev.#5: 174.4 MH/s (483.27ms)
Speed.Dev.#6: 175.3 MH/s (480.53ms)
Speed.Dev.#7: 175.9 MH/s (483.79ms)
Speed.Dev.#8: 175.9 MH/s (483.84ms)
Speed.Dev.#9: 175.1 MH/s (481.23ms)
Speed.Dev.#10: 177.5 MH/s (479.46ms)
Speed.Dev.#11: 177.4 MH/s (479.99ms)
Speed.Dev.#12: 174.8 MH/s (486.82ms)
Speed.Dev.#13: 177.6 MH/s (484.14ms)
Speed.Dev.#14: 175.8 MH/s (484.19ms)
Speed.Dev.#15: 176.8 MH/s (481.54ms)
Speed.Dev.#16: 175.0 MH/s (481.54ms)
Speed.Dev.#*.: 2814.1 MH/s

We estimate the cost of breaking the EuroRadio MAC on
a p2.16xlarge instance as follows: the instance produces
2,814,100,000 outputs per second. As this involves 25 rounds
of DES, the actual indicative speed is 70,352,500,000 per
second. To break DES on a single instance in terms of time
can be calculated by the below equation:

256

~ 284 h
(70, 352, 500, 000 60 * 60) ours

On 400 p2.16xlarge instances, this would take ~ 42 hours.

As the EuroRadio MAC involves 6 DES encryptions (32
byte messages with 3 DES encryptions each, totalling 6 to
test the key), we can use the below equation to give a time
of 30 minutes on 3,400 simultaneous instances:

6 - 256
(70, 352,500, 000 * 60 * 3400)

~ 30 mins

As a p2.16xlarge instance costs $14.40 per hour to rent,
this would cost (for 3,400 instances) $48,960.

C. DATA CAPTURE

Top Block x
Frequency: [923,6M |]
2.00e+01
J 922.803 MHz, 1.98e+01s a
4 20
1.50e+01 _
] 40 =
—-] [0}
0 =
] - (]
0 1.00e+01 s Z
£ 1 <
= 1 0=
— =
5.00e+00 - -100
1 fruEE I -120
0.00e+00 - . . : . -140
$23.000 $23.500 924,000 $24.500
Frequency (MHz)
] mData 0
0 4
20
@ 40
z]
T 50
g 1
5 90
a]
-100 4 L
-120
-140

m [™ xeminal | ™ sjt@cca-prit-oo... |

L | GnuRadio ”@gsmigsmLNEW...J”‘Capturing from ... @Top Block

Figure 7: RF waterfall graph output from gnuradio. Potential GSM-R data (red areas) is shown on frequencies
923.6MHz and 924.4MHz.

a ® RE] @] Q QI

[‘ | | (gsm_a.ie.mobileid.type != 0) && licmp && gsm_a.ccch [X] ~| Expression... +
No. Time Source Destination Protocol Length Info
8339 116.576941 127.0.0.1 127.0.0.1 GSMTAP 81 (CCCH) (RR) Paging Request Type 1
8375 117.042631 127.0.0.1 127.0.0.1 GSMTAP 81 (CCCH) (RR) Paging Request Type 1
8413 117.515131 127.0.0.1 127.0.0.1 GSMTAP 81 (CCCH) (RR) Paging Request Type 1
8443 117.958252 127.0.0.1 127.0.0.1 GSMTAP 81 (CCCH) (RR) Paging Request Type 1
20677 303.936687 127.0.0.1 127.0.0.1 GSMTAP 81 (CCCH) (RR) Paging Request Type 1
20717 304.407466 127.0.0.1 127.0.0.1 GSMTAP 81 (CCCH) (RR) Paging Request Type 1
20755 304.859012 127.0.0.1 127.0.0.1 GSMTAP 81 (CCCH) (RR) Paging Request Type 1
0000 = Skip Indicator: No indication of selected PLMN (0)
Message Type: Paging Request Type 1
v Page Mode

. 0000 = Page Mode: Normal paging (0)
v Channel Needed

..00 = Channel 1: Any channel (@)
00.. = Channel 2: Any channel (@)
v Mobile Identity - Mobile Identity 1 - TMSI/P-TMSI (@x1a25f@9)
Length: 5
1111 = Unused: oxof
.0 = 0dd/even indication: Even number of identity digits

++v. 2100 = Mobile Identity Type: TMSI/P-TMSI/M-TMSI (4)
TMSI/P-TMSI: @0x01a25f09
v P1 Rest Octets
H... = NLN(PCH): Present
W11, .. NLN (PCH): 3
. . NLN Status (PCH): @
Priority 1: Present
Call priority: no priority applied (@) for Mobile Identity 1
Priority 2: Not Present
Group Call Information: Not Present

O 7 Textitem (text), 6 bytes Packets: 29636 - Displayed: 7 (0.0%) - Load time: 0:0.493 Profile: Default

Figure 8: Wireshark screenshot showing captured GSM-R packets. The packets captured allow recovery of
the TMSI value.

