SCAIL: An integrated Starcraft Al System

Jay Young, Fran Smith, Christopher Atkinson, Ken Poyner and Tom Chothia

Abstract—We present the work on our integrated Al system
SCAIL, which is capable of playing a full round of the
Real-Time Strategy game Starcraft. Our system makes use of
modern Al techniques such as particle filtering, on-line machine
learning, drive-based motivation systems and artificial emotions,
used to find novel structure in the dynamic playing environment,
which is exploited by both high and low-level control systems.
We employ a principled architecture, capable of expressing
high level goal-directed behaviour. We provide an overview
of our system, and a comparative evaluation against the in-
game Als of Starcraft, as well as thirteen third party systems.
We go on to detail how the techniques and tools we introduce
provide advantages to our system over the current state-of-the-
art, resulting in improved performance when competing against
those systems.

I. INTRODUCTION

We are interested in building Al systems capable of acting
in dynamic, complex domains. Such domains may exhibit
the feature of being oversubscribed, by which we mean that
there may many ways for an agent to accomplish mission-
level goals, necessitating the management of various trade-
offs in deciding which course of action to commit to. As
the complexity of a domain grows, it becomes increasingly
difficult to envision how a good solution might look, however
we do know that any such solution will be an integrated
system, gathering together a mixture of various Al techniques
to address individual sub-problems.

Such an integrated system will be composed of a broad
set of information processing systems and mechanisms for
managing internal state and control, as well as affectors for
altering the environment and executing plans. Our view is
that we would prefer these systems to be general mechanisms
for accomplishing tasks in the operating domain. That is, we
would like to bestow fools upon Al systems, as opposed
to full solutions encoded at design-time. An autonomous
system should ideally then learn how its tools can be best
utilised in order to produce novel solutions for problems
it might encounter that can not be anticipated at design-
time. In Starcraft the need for such capabilities is clear,
as we, as designers, cannot pre-emptively anticipate every
situation an Al system might find itself in. An ideal system
should be able to creatively adapt, as expert human players
do. However, much work still needs to be done before we
can reach this point, as questions exist as to how we might
process, structure and present information about Starcraft to
an Al system, and how this might be exploited.

Crucial to the furthering of Al research in this area is the
nurturing of a research community to maintain a body of
work on integrated solutions and techniques. It is this body
of work that we contribute to.

II. STARCRAFT

Starcraft is a Real-Time Strategy game released by Bliz-
zard Entertainment in 1998'. The game requires a human
player to engage in high-level goal-directed planning, reason-
ing under uncertainty, creative adaptation, and the manage-
ment of limited attentional resources. This must be accom-
plished in real-time, which exasperates many of the already
difficult AI challenges present. In recent years the game
has become the focus of interest from the AI community,
supported by the release of the Brood-War API (BWAPI?),
a software API which allows for the injection of code into
the Starcraft game engine, and facilitates the production of
third-party Al players. This has led to several high-profile
tournaments, such as those run by IEEE CIG and AIIDE,
which pit these Als against each other.

III. RELATED WORK

Starcraft is currently the focus of a small, growing, re-
search community, which seeks to construct systems to tackle
the AI problems presented by the domain. This comprises a
body of work employing techniques such as Bayesian pro-
gramming [1], Neural Networks [2], Swarm Intelligence [3],
[4], and work on systems that seek to learn from analysing
replays of expert human players [5], [6]. There also exist
tournaments, with major events run by IEEE and AIIDE,
in which large, integrated systems compete against each
other. Specifically in our own work, we are interested in the
kind of integrated architectures and information processing
mechanisms that support goal-directed behaviour [7], and
allow systems to play a full round of the game for entry
into such tournaments.

IV. OVERVIEW

Our primary contribution is a description of the architec-
ture and techniques used in a system capable of playing a
full game of the real-time strategy game Starcraft as the
Protoss faction. We introduce a range of techniques that
extend the current state-of-the-art in this domain by exposing
information and interfaces that allow our system to make
intelligent decisions at both high and low levels. Starcraft
is as yet a young domain and test-bed for Al work, and so
part of our contribution is to disseminate our ideas as a basis
for future work, and as a furthering of existing knowledge.
Due to space constraints our description will however remain
relatively high-level.

Several elements of our work are informed or inspired
by our pre-existing experience with mobile robotics, with

Uhttp://us.blizzard.com/en-us/games/sc/
Zhttp://code.google.com/p/bwapi/



one of our long-term research aims being to learn about
systems used for the control of mobile robots as applied to
virtual domains. In this sense, our contribution extends to
introducing techniques and vocabulary to the literature that
are not prevalent in the current work, and so may provide
interesting avenues for future work.

A. Farticle Filters

Throughout this paper we make extensive use of the
term particle filter, which is a technique that may be more
specifically described as a form of stochastic optimisation
[8]. In our system, we employ particle filters to reason about
and locate structure in the virtual environment of Starcraft.
We define a particle filter as consisting of a point p in
space, around which we generate a Gaussian distribution
of n child points. These points are then filtered through
heuristic evaluation, leaving only those points that meet
some specified criteria. The number and variance of points
generated is configurable, and the exact nature of filtering via
heuristic evaluation depends on the implementation context
in which the filter is to be employed. For instance, a micro-
management system for controlling a Dragoon might employ
a particle filter during combat to locate nearby points in space
that are in range of the fewest enemy units. This produces
a set of points from the initial distribution that meet the
heuristic criteria, which can be used or further filtered (i.e.
Perhaps by finding the points closest to the unit’s current
position) to move the unit away from danger. Particle filters
are computationally inexpensive, and are used in-real time in
our system as tools to find solutions such spacial problems.

V. MACRO MANAGEMENT

We split the discussion of our system into two sections:
Macro and Micro. By the first, we mean those systems
concerned with high-level strategy, such as build orders, unit
production and strategic decision making. By the second, we
refer to those systems concerned with low-level control of
individual units, and groups of units, in the game. We begin
by describing systems intended to address the problems of
macro-level management.

A. Task-Based architecture

When developing Starcraft Al projects we would like to
interface with the game in powerful ways, affording both
high and low-level control. The base components of BWAPI
go some way towards realising this goal, but provide only a
basic layer of functionality. In order to produce sophisticated
Al programs, we need to add-in custom functionality and
architectures on top of this layer. How to do this is not
immediately obvious, however, nor is it a trivial task. To
counter the inexorable complexity such systems tend to take
on, we advocate a principled and extensible architecture
design.

We implement a goal generation and management archi-
tecture based around the idea of a unit of work we call a
Task. A Task is a request to initiate some form of macro-
level action, such as unit training, building construction,

Task
Generators

Pending

Tasks Arbitrator

Achievability
Analysis

Execution Layer

Continual ‘

Monitoring

Fig. 1. High-level task system diagram

research, attacking, defending etc. Each Task encloses a
reactive plan designed to accomplish a high-level goal, as
well as tools required for monitoring its own execution
and repairing failures as and when they occur. Tasks are
generated by independent task generators — for example, a
build order is given as an ordered sequence of construction
Tasks. Similarly, to produce combat units, we use drives
to periodically instantiate training Tasks, the mechanisms
behind which will be discussed further on.

A Task related to constructing a building might be split
down into:

o Evaluating whether or not the player has the required
tech or resources.

« Finding a suitable worker to construct the building.

o Locating a suitable building location.

« Internally reserving resources for the Task.

o Monitoring the progress of construction.

o Alerting the system regarding completion or failure.

Since plans will be roughly identical across a given class
of task — such as building or training — we generalise along
these lines to create several task-types. Tasks are passed on
to an arbitrator, which manages conflicts in situations where
multiple tasks require access to the same resources. This
overall workflow is broadly depicted in Figure 1.

We also express activities such as scouting, attacking
and harassing the enemy using the task system. This is
accomplished either through specifying certain tasks as part
of an opening sequence, such as a build order, or generating
them independently via systems that monitor changing game
conditions and instantiate tasks as required to address them.
For instance, we employ a Defense Monitor which instan-
tiates tasks to rally idle combat units to the aid of friendly
bases that are under attack. Another system monitors the
number of workers at a base, and instantiates training tasks if
the numbers fall below pre-set thresholds — the same system
is capable of requisitioning workers from other bases if they
are mined out or oversubscribed.



B. Belief Management

In Starcraft, a player is only able to observe the real-time
state of the game environment directly surrounding their own
units or buildings, which is known as the fog of war effect. In
order to reason about entities it cannot immediately observe
(but knows to exist), an Al must be equipped with a memory.
We address this need by maintaining a database of beliefs
about observations that have been made in the past, which
may be simple facts such as The enemy has building T,
located at (x,y), in such a case a belief will persist until
the unit pertaining to it has been observed to have been
destroyed, at which point it is abandoned. Beliefs might
also include more complex processes, such as a belief of
the strength of an opponent based on observed information.

Inference is performed via a rules-based engine. Particular
units and buildings have networks of pre-requisites that must
be constructed before they themselves can be trained or
constructed — available through the BWAPI interface. Should
the Al see such a unit, it uses these rules to infer that any
pre-requisites must also exist, though it will not be aware of
their physical location immediately. We therefore instantiate
blank beliefs regarding these elements. Later on, as further
observations are made (through scouting, for instance) the
Al will fill in these blanks and ground abstract beliefs in
concrete terms.

Through this belief-based approach we are able to produce
a model of the state of an opponent, which can be utilised
in order to inform strategic decisions such as which units
to employ against an opponent and where weak-spots in
defences may be. The database is also accessible by all units
at the micromanagement level, meaning that units possess
a shared, global view of the game state. This affords inter-
unit collaboration, for example by allowing scouts to spot
targets for offensive forces, and also renders the “Blind”
effect mostly ineffective, as so long one of our units still has
full sight, their vision is shared through the belief database
with all others.

As a tool to work with this space, we implement a
simplified version of the DBSCAN algorithm [9], which
operates over our belief space and clusters units based on
spacial density. This provides the ability to observe a unit
and immediately and efficiently retrieve a list of nearby units
that may be supporting it, one use of which is for force
calculations. This also lets us partition units off into groups,
and so we can also reason about which groups of units
exist, and which are supporting each other. If these units are
not currently visible, then their last believed locations are
reported. This lets the system make more reliable decisions
during protracted combat over large distances or differing
terrain heights, where units might flow in and out of line of
sight. The clustering technique can also be used offensively,
for instance, by applying the algorithm to a model of an
enemy base to find clusters of valuable buildings and units
upon which to launch a nuclear strike.

Fig. 2.
Members of each group are coloured red, green and white respectively.

System producing clusters of three perceived groups of units.

VI. ATTACK DRIVE

A difficult question in RTS games, both for human and Al
players, is that of when a player should launch an attack. A
human player would likely be armed with some knowledge of
the build order and timing of the opponent, and through this
might be able to anticipate weaknesses and when they should
attack in order to take advantage. How we might go about
bestowing this ability on an Al system is a highly complex
and difficult question. One of the tools for answering this
question is our belief database, which allows us to talk about
what we expect state of the opponent might be. But the
flow of information in this dimension is discontinuous - we
are only capable of observing sparse snap-shots of part of
the state of the opponent. While we may believe that the
opponent has a force strength of n based on our previous
observations, in-between observations the value of those
beliefs degrades (assuming that the opponent is continually
expanding their force, at some unobserved rate). There is
then a finite time horizon on the usefulness of a belief.
This then requires a system to keep its knowledge about an
opponent up-to-date, typically through scouting, but this may
not always be possible — especially late in the game — as a
base may be heavily defended and impenetrable to scouts.

We think about the problem in two dimensions. First, we
wish to field a force that we have some justifiable belief will
be able to pose a threat to that possessed by the enemy.
Second, we accept that there is time pressure at play in
making such decisions, preferring to make them based on
information that has been recently acquired.

The central tool we employ is a comparison of the number
of minerals spent on the enemy force as compared to our
own, including upgrades?.

We use the disparity between friendly and enemy mineral
expenditure on forces as a drive, which motivates the system
to act [10], [11]. In humans, an example of a similar drive
is hunger — our hunger level rises steadily until we eat, at

31t is certainly possible to think of other comparators that might employ
richer representations.



which point it is satisfied for a time. We utilise the same
mechanism here.

The system launches attacks on bases when it believes it
can field a force that is worth more than that defending, and
we employ a threshold on the drive to trigger attacks. We
initially set this threshold at 10% (i.e. the believed enemy
force must be worth at least 10% less than the force we are
capable of fielding), which we ramp up to 30% over time,
so as to not dissuade the system from launching early-game
attacks where forces might be more evenly matched. This
means that as time progresses towards the mid-game, the
system prefers to field forces it believes will have a greater
advantage over the opponent. In addition, we weight the
mineral disparity values such that information gathered more
recently has a higher effect on the drive than that gathered
less recently. This causes the drive to spike slightly when
new information has been gathered. Sustained spikes over a
short period of time help to breach the threshold and cause
attacks to be triggered.

A. The Synapse system

We were particularly inspired by the work of [4], who
provide an algorithm for automated unit training in Real-
Time Strategy games based on insect-like scheduling. The
aim being to remove this macro responsibility from a player,
and allow them to focus limited attentional resources on
micro-managing units to better effect. We implement a sim-
pler system with similar goals we call Synapse which uses a
drive to periodically instantiate tasks to continually produce
units for use by other parts of the system. Through this, our
aim is to treat units as a resource that can be requisitioned and
utilised by other parts of the system. We also aim to abstract
over the need to impose metric constraints on armies — For
instance, we would like to avoid entirely the need to specify
that an army must contain n units before an attack can be
launched. Instead, we view that the motivating forces behind
such decisions should be based on qualitative reasoning
about relative force strengths and opponent strategies, not
entirely based in metric measurements of the number of units
available, though this is certainly a factor.

This may be the end of our discussion of this aspect of
our system if all we required to be able to do was to produce
a large number of a single unit type. In reality, success
in RTS games such as Starcraft involves producing and
managing heterogeneous teams of units. This then produces
more questions - for instance, how do we decide how many
units of a certain type to deploy as part of an army?

We look at potential solutions to this problem as a matter
of evaluating the qualitative properties of the army. Our
particular approach is to describe the composition of an army
in terms of a set of relative ratios of unit types. That is to say,
we can express that an army should contain, for instance, one
Zealot for every three Dragoons. This then allows us to state
whether the condition holds or not in terms of the number
of those units we possess. If not, we determine which type
should be built in order to attempt to bring the ratio back
into balance.

We implement a single numeric drive that increases in
value over time until a threshold is hit, at which point
it is returned to its starting value. The size of the army
produced by the system can be controlled by increasing
the value of the threshold over time, such that production
speed slows over time, resulting in the army reaching some
desired, terminal size. However instead we choose to keep
the threshold static, meaning that the system will engage in
continual, synchronised production across all facilities under
its control until the population cap is hit.

Once the drive threshold is hit, the system evaluates the set
of unit ratios available to it. Ratios that are unbalanced are
filtered, and those with the highest magnitudes are selected.
The system then instantiates tasks to bring these ratios back
towards their intended values. For the production of military
units if a ratio is in perfect balance we instantiate training
tasks to produce units to deliberately violate the ratio slightly,
so as to motivate continual production. However, in some
cases we also wish for a ratio to remain in harmony once
it is met (for example, we wish to have three Gateways for
every Nexus that we have) which is also possible.

The Synapse system is able to manage the construction
of an army across any number of production facilities. The
composition of the force produced is defined by the set of
unit ratios present in the system. These however are not static
and may be modulated by other processes in the system.
For instance, the choice of which units to deploy might
change due to an opponent fielding units that counter or
are particularly effective against those produced so far. We
express the transition between distinct army compositions
as a modulation of the set of unit ratios, meaning that the
composition of an army can be modified in real-time, thus
allowing the system to adapt to new situations.

B. Scouting and Learning

We were interested in how a system might learn how to
gather information about an opponent. The obvious sources
of such information are base locations where the opponent
may have buildings and units to observe and evaluate.
However, units do not stay in one place as buildings do,
and there may exist more than one base location under the
control of the opponent. If we consider that units might move
around, we might also be interested in where we need to look
on the map in order to observe this happening.

We accomplish this by employing an abstraction of the
game map based around small chunks of space in the world
we call places, inspired by the work of [12] on a similar
system used for cognitive mapping on mobile robots. A Place
can be base locations or choke points, which we extract from
the map at the start of a game. An example can be seen in
Figure 3, where the orange circle represents a place over a
large choke point, and Figure 2 where a place is located
over a start location. Each place is initially seeded with
a heuristic score, based on its distance from the system’s
starting location, meaning that those places further away
are initially scored more highly. In addition, each place has
a value coefficient which acts as a ranking, distinguishing



starting locations from other base locations and choke points.
In short, through this we define at design-time the parts of
the map we believe may initially be interesting — starting
locations, and the choke points and expansion locations
around them.

At runtime, when scouts are employed, they select and
explore locations from the set of available places, preferring
those ranked more highly by the heuristic score. As a scout
explores a place, it modifies the place’s heuristic score
based on how much extra knowledge is gained about the
opponent from visiting it. That is to say that observing
new units, buildings or tech that might have been as-yet
undiscovered, increases the heuristic value associated with
a place. However, viewing units that have already been
observed and known to exist does not add to the score.

In short, this means that as the system explores the map,
it learns which points are interesting to look at in order
to learn about the opponent. Those places that yield the
most knowledge are preferred targets for re-visiting, in order
to keep that knowledge up-to-date. This information is fed
into the database of beliefs, and used for various forms of
decision-making (such as deciding when to attack) in other
parts of the system.

VII. MICRO MANAGEMENT

We now describe systems used for micro-level control of
individual units.

A. Behaviour-based approach

We implement a micro-management architecture roughly
based on the principles of the subsumption architecture of
Brooks [13], [14], popularly applied to the control of mobile
robots in the last two decades. The system is designed as
a layered hierarchy of behaviours, with each behaviour pos-
sessing an activation criteria as well as a definition in code.
As the activation criteria for a behaviour is met, the behaviour
fires and executes the payload of code. This approach is
particularly well-suited to the decentralised, reactive control
of large numbers of small Al systems. In our system,
the behaviour of all units is designed using this general
principle, though naturally each unique unit type utilises
implementations tailored to its own specific characteristics
and needs. For instance, Arbiters have behaviours to seek
out crowds for the application of Stasis, whereas Dragoons
do not.

Each behaviour in the hierarchy may suppress either those
directly below it, or a set. A concrete example of how this
is applied is given by an implementation of simple Dark
Templar tactics used for harassment. Each Templar has three
behaviours - attack, hide and explore, which the system
attempts to execute sequentially on each frame. The highest
priority behaviour is to hide if detected - at which point
a Templar tries to find a safe place where he will not be
detected or attacked. That is, this behaviour is evaluated first
— if it returns true, its code is executed and all lower-level
behaviours are suppressed. Second highest is to attack - if
not hiding the Templar will seek out targets in the area.

Finally, if no targets are believed to exist, the Templar will
attempt to explore the area. As such, the hiding behaviour is
able to suppress both the attacking and exploring behaviours,
and the attacking behaviour is able to suppress the exploring
behaviour.

B. Virtual Emotions

On top of our behaviour-based architecture we also imple-
ment a system of virtual drives to provide emergent, emotion-
based control of units [15]. Specifically, this is used as a
mechanism to equip units with the tools required to make
decisions in combat about when to attack or retreat, but
primarily to facilitate decentralised combat formations. In
this we draw from existing work in Artificial Life systems
[16], as well as applications of similar techniques to virtual
characters in modern video games [17]. In our system we
apply a version of these techniques to all combat units, with
each unit type following a set of rules designed to best exploit
its unique characteristics.

Managing the formation of units in combat centrally is
a difficult task. Ground-based units are constrained by the
structure of the environment, meaning that formations must
be calculated to take this into account. Maintaining such a
formation during movement exasperates the complexity of
the task. We preferred then to provide a set of rules that
can produce emergent formations in a decentralised way,
making the task more manageable, and potentially locating
novel structure in the environment that may not be able to be
recognised or fully exploited by centralised approaches (for
example, by using a set of pre-defined formation templates).
Here we discuss the application of such techniques to the
Protoss Dragoon.

We assign units two discrete, numeric drives, which we
refer to in natural terms as ’confidence” and “caution”. The
drives are modulated by the presence of friendly and enemy
buildings and units in the immediate vicinity of the unit at a
particular point in time. If a unit is supported by its allies, it
will grow confident, but will grow cautious in the presence
of enemy units. If a unit is more confident than cautious,
it will be more likely to stand its ground and attack nearby
enemy units. However, as the drives approach equilibrium
the unit will be more likely to begin backing away towards a
safer nearby point (for example, a point more well-defended
by friendly units or buildings), leading to a full retreat if
overwhelmed. These points are located using a particle filter
centred on the Dragoon that examines and scores nearby
points in terms of their relative caution values. In the case of
Protoss Dragoons, this allows us to replicate the “Dragoon
Dancing” tactic. We have also applied the same technique to
Terran Vultures to replicate Vulture kiting.

We couple these drives with a desire for each unit to
ensure that it is never in weapons range of more enemy units
than a specified threshold, meaning that units will become
significantly more cautious if this condition is violated,
though grow more confident if it’s own weapons range is
greater than that of an opponent. This produces emergent
unit formations, such as shown in Figure 3. In this example,



Fig. 3.

Emergent arc formation, post-combat.

the force had just completed combat against a group of
enemies that were in the centre of the screen. The drive-
based system pushed units to form themselves in an arc
around the opponents, attempting to find equilibrium between
the confidence and caution drives, while keeping the number
of enemy units in range below the specified threshold, with
the result of maximising the area covered by the firepower
of the force. Interestingly, these kinds of formations mimic
those employed by human players, though an Al system is
capable of executing them to higher degrees of precision and
scale.

Using this architecture we are able to easily implement
more advanced behaviours that support other parts of the
system. For instance, units will be less likely to retreat from
a battle in which they are defending a central base unit (such
as a Protoss Nexus) or a group of workers - as we would
prefer that they battle for as long as possible in order to
buy time for reinforcements to arrive. We accomplish this
behaviour by simply modulating the confidence drive in the
presence of such units. The effect is that, while this does not
entirely preclude the opportunity for retreat in the face of an
overwhelming force, it is however less likely.

C. Path finding: Threat-aware and Space-utilising

We make use of several implementations of threat-aware
path-finding, which take advantage of our belief-based ar-
chitecture in order to find paths through the environment
that place a unit in minimal contact with enemy units, such
as missile turrets, photon cannons and so on. To do this,
we build on the A-Star search implementation found in the
source of the BWTA library [18].

We make two important modifications. Firstly, we provide
a slider for modulating the granularity of the search, which
causes the algorithm to move in larger steps if so desired
(ie. only every r’th tile being considered). This increases
the speed of the algorithm significantly, and means that it
can be used efficiently in real-time across short and medium
distances with minimal impact on performance. Plans of
higher granularity are also useful for directing airborne units,
as since they do not have the same constraints on terrain

geometry as ground units, do not need highly detailed plans.

Secondly, we modify the heuristic value of each node
evaluated during the search based on the number of enemy
units it is in range of, information which is extracted from
our database of beliefs. This means that such positions are
penalised, and paths that navigate around structures such
as enemy missile turrets, bunkers, photon cannons etc. are
preferred.

This is necessarily performed under the condition of partial
observability, however. For instance, we may plan a path
into an enemy base, and upon arriving see that the path
now crosses into the firing line of a turret, which we had
previously not seen. To deal with such situations, we employ
an event-based model coupled with a replanning approach.
When new emplacements are discovered by the system, all
plans currently being followed by units are evaluated to see
if any of path points intersect with the firing range of the
newly observed unit. If so, we simply replan the path from
the current position of the affected unit to the target, avoiding
the newly-discovered emplacement. This allows a transport
such as a Shuttle to find a route directly into the centre of
an enemy base, while safely avoiding anti-air units.

D. Space-Filling

In experiments, we noted significant disparities between
the way that human and Al players control groups of units. A
human player, when moving an army, will move it gradually,
bit-by-bit towards the target area. Al players often issue a
single move command towards the target, causing each unit
in the army to use the path calculated by its in-game path
finding. However, this optimum, shortest-distance path may
not be the best choice, as it often results in an army sticking
to walls and becoming separated out into a long line of
individual units which can be easily picked off.

We view that one difference is as follows: Human players
attempt to make maximum use of the space available to them
when moving groups of units around. Rigidly sticking to in-
game path-finding does not accomplish this.

However, we would prefer to not have to abandon the ca-
pabilities of the path-finding algorithm entirely. Our approach
then is to calculate a path to our target are as normal, but
we then employ a series of particle filters on each step of
the path in order to try to improve points to make more use
of available space.

This is accomplished as follows. We first calculate the
path « to the target using a standard A-Star search. For each
position p € « we generate a distribution f(p) of particles in
the area around it. We then generate a second tier g(f(p)) of
smaller distributions around each of these points. The points
generated on this final step are filtered based on whether they
lie on a walkable map tile or not, and assigned a score of 1
or 0 respectively. For each point in the original distribution
f(p), we then assign the sum of the scores of all child points
generated by g(f(p)). Comparing the score of the original
path node with that of the highest scoring point generated
around it, those path nodes that are capable of being moved
to areas where they are surrounded by more walkable points



than their original location are swapped with their improved
children.

One weakness of the path-finding system is its speed.
While the rest of our system is capable of acting in real-
time, with a typical tick” taking around 2-3ms, threat-aware
A-Star path-finding often takes upwards of 90ms to locate a
path. The primary reason for this is that, when tasked with
calculating paths across long distances (such as moving an
army from one side of a map to another) our system will
calculate a full path from start to finish. In comparison, the
built-in path-finding system of Starcraft seems to calculate
partial paths to intermediate points, and re-calculates from
there once the unit reaches them, making the search more
efficient. We should also mention however that our search is
further exasperated by having to calculate threat values for
each point in the search.

VIII. EVALUATION

The most common form of evaluation for Starcraft Als is
to compare work against the default Al players in the game.
However the growing sophistication of third party systems
means that this task is becoming increasingly trivial. It also
places an upper limit on the need for system adaptability,
as the in-game Al players have an extremely small space
of possible strategies, requiring little learning and adaptation
after a point. A more challenging form of evaluation is to
play against expert human players, however these are rare
and evaluation is necessarily expensive in terms of time,
making it difficult to acquire statistically significant results.
Somewhere in-between these two extremes lies the possi-
bility of evaluation against existing, third-party Al systems
that compete in tournaments such as those hosted by IEEE
CIG and AIIDE each year. We argue that this form of
evaluation should be standard, as it allows us to further push
the boundaries of Al systems in this domain.

IX. EXPERIMENT PARAMETERS

We took each of the Als submitted to the 2011 AIIDE
Starcraft AI competition, along with the built-in Al players
of Starcraft, and played 500 games with our own system
against each, on a random map rotation taken from those
used in the AIIDE tournament. We employed a time-limit of
84000 in-game frames, upon which the Al with the highest
in-game score would be considered the winner. Crashes were
marked as a win for the non-crashing system.

X. QUANTITATIVE ANALYSIS

Figures 4 and 5 show our results. Overall we see that while
our system performs well against the default Als of Starcraft,
third-party Als prove to be more of a challenge. This is to be
expected, as the sophistication of such systems far outweighs
that of the now 14-year old in-game Als. The set of systems
our Al performs more poorly against seems to correlate with
those systems that we know to be the state-of-the-art, and
that have been subject to extended periods of development,
often by teams, and known to perform well in the tournament

Name Win Rate
Zerg 95%
Protoss 92%
Terran 94%

Fig. 4. Comparison of wins between built-in Als and our system over 300
games.

Name Race Win Rate
Aiur P 32%
bigbrother zZ 82%
BroodwarBotQ P 42%
BTHAI Z 62%
Cromulent T 75%
EISBot P 37%
ItayUndermind Z 42%
Nova T 55%
Quorum T 90%
Skynet P 22%
SPAR P 56%
UAlbertaBot P 25%
Undermind T 49%

Fig. 5. Comparison of wins between third party systems and our system
over 500 games.

settings of IEEE CIG and AIIDE (such as Skynet, EISBot
and UAlbertaBot).

In practice, none of the games played reached the time
limit we set, with most games that did not result in a crash
lasting between 25,000-35,000 frames.

XI. QUALITATIVE ANALYSIS

We are particularly focused on being able to explain
why our system performs as it does, so as to develop an
ontology of capabilities that might be necessary for good
performance. On the few occasions our system did lose to
the in-game Als of Starcraft, we attribute the losses to rare
bugs. Considering our system is the result of only a few
months of development, we regard this as acceptable. Such
bugs include malfunctioning build orders, units becoming
stuck and occasional crashes. The particular capability that
we observe provides the greatest advantage is that of the
emotion-based micro management system. Against systems
that do not display as finely-grained control over individual
units during combat as our system, such as bigbrother,
Cromulent, Quorum and BTHAI, this proves to be highly
powerful. Als that attempt to keep their units bunched up
are particularly susceptible to being outgunned by the kind
of emergent arc-based structures as in Figure 3, as well as
systems that move their armies in long, column formations.
In addition, our use of a pathfinding algorithm that makes
better use of free space than that present in the game allows
our armies the room essential for such formations.



A further advantage is provided by our use of particle fil-
ters to control the position of Arbiters by generating a cloud
of points and selecting those which allow the Arbiter to stay
out of enemy weapons range while still cloaking the units
below it, and to manage the trade-off between safety and
cloaking. This allows us to quickly and autonomously locate
positions in a way that a human player would find extremely
difficult while maintaining micro control, especially in cases
where more than one Arbiter is present.

Our use of attack drives pays off by ensuring our system
is continually aggressive, with even unsuccessful attacks
revealing information about the opponent which is later ex-
ploited. We observe that several of the systems we evaluated
against seem to only attack when a certain, pre-defined
number of units is available. Whereas our system attacks
when it believes it is able to inflict damage on an opponent,
taking into account its own capabilities and a mixture of
the observed and predicted strength of an opponent. This
produces a scale of possible attacks generated based on this
information, from single-unit harassment to large armies.
Many systems seem to cope poorly with small, harassing
attacks that deal light damage in the early and mid-game.
Several systems do not re-build base buildings if they are
destroyed. Our own system is able to re-build as needed,
as it keeps a logical description of a base’s state which is
continually monitored, and instantiates construction tasks if
violated.

XII. FUTURE WORK

Evaluation against human players, as discussed previously,
poses several challenges that are outside the scope of our
current project, and so this avenue was left for future work,
since we were primarily interested in systems capable of
competing against other Als in tournaments. Construction
of systems to play against humans requires us to think about
different approaches to system design. As Als are not as con-
strained by limited attentional resources as humans, but tend
to lack learning and adaptation capabilities. In professional
tournaments, we observe strategies, both micro and macro,
falling in and out of fashion, with new innovations being
made each year. The cognitive and information-processing
requirements to produce these capabilities are not trivial, and
provide a rich source of inspiration for future work.

As far as our own work goes, we are currently making use
of our clustering algorithm as a basis for applying Regional
Connection Calculi [19] to provide logics for reasoning about
the structure and motion of groups of units in qualitative
ways. Recent work by Sridhar and Cohn [20] has shown that
this approach can provide promising avenues for addressing
the task recognition problem, and we are using similar
techniques with the aim of producing expressive and re-
usable methods of opponent modelling.

XIIT. CONCLUSION

We presented our SCAIL system, an integrated system
capable of playing a full round of the Real-Time Strategy
game Starcraft. The system makes use of particle filters,

on-line machine learning, drive-based motivation systems
and artificial emotions to provide control systems for high
and low-level behaviour. We showed that the use of these
techniques can provide an advantage over many current state-
of-the-art systems. Our system does however still struggle
against those Als that have typically ranked at or near the top
of recent tournaments. However, after only a few months of
development, we view our results as encouraging, being only
at the beginning of our exploration of how these techniques
might be best exploited in this interesting domain.

REFERENCES

[1] G. Synnaeve, “A Bayesian model for RTS units control applied to
StarCraft,” Computational Intelligence and Games, pp. 190-196, 2011.

[2] A. Shantia, E. Begue, and M. Wiering, “Connectionist reinforcement

learning for intelligent unit micro management in StarCraft,” Interna-

tional Joint Conference on Neural Networks, 2011.

I. Gonzalez and L. Garrido, “Spatial Distribution through Swarm

Behavior on a Military Group in the Starcraft Video Game,” 10th

Mexican International Conference on Artificial Intelligence, pp. 77—

82, Nov. 2011.

[4] M. Santos and C. Martinho, “Wasp-Like Scheduling for Unit Training
in Real-Time Strategy Games,” AIIDE, pp. 195-200, 2008.

[5] J. Lewis, “A Corpus Analysis of Strategy Video Game Play in
Starcraft: Brood War,” Annual Conference of the Cognitive Science
Society, pp. 687-692, 2011.

[6] B. Weber, “Integrating Expert Knowledge and Experience,” Fifteenth
AAAI/SIGART Doctoral Consortium, 2010.

[7] B. Weber and M. Mateas, “Applying Goal-Driven Autonomy to Star-
Craft,” Artificial Intelligence and Interactive Digital Entertainment,
no. Orkin, 2010.

[81 A. S. Arnaud Doucet, Nando de Freitas, Neil Gordon, Sequential
Monte Carlo Methods in Practice, 2001.

[9] M. Ester, H. Kriegel, and J. Sander, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” Proc. of 2nd
International Conference on Knowledge Discovery and Data Mining,
1996.

[10] L. P. Beaudoin and A. Sloman, “A Study of Motive Processing and
Attention,” pp. 229-238, 1993.

[11] M. Hanheide and N. Hawes, “A framework for goal generation and
management,” AAAI Workshop on Goal-Directed Autonomy, 2010.

[12] A. Pronobis, K. Sjoo, and A. Aydemir, “A framework for robust
cognitive spatial mapping,” Proceedings of the 14th International
Conference on Advanced Robotics, 2009.

[13] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal of Robotics and Automation, 1986.

, “Intelligence without representation,” Artificial intelligence,
1991.

[15] M. Scheutz, “Useful roles of emotions in artificial agents: A case study
from artificial life,” Proceedings of the 19th national conference on
Artifical intelligence, pp. 42—-47, 2004.

[16] M. Ptaszynski, “A Pragmatic Approach to Implementation of Emo-
tional Intelligence in Machines,” pp. 101-102, 2008.

[17] L. Pena, S. Ossowski, J. Pena, and J. Sanchez, “EEP A lightweight
emotional model : Application to RPG video game characters,” in
IEEE Computational Intelligence and Games. 1EEE, 2011, pp. 142—
149.

[18] L. Perkins, “Terrain Analysis in Real-Time Strategy Games: An
Integrated Approach to Choke Point Detection and Region Decom-
position,” AIIDE, pp. 168-173, 2010.

[19] D. Randell and Z. Cui, “A spatial logic based on regions and
connection,” KR, 1992.

[20] M. Sridhar and A. Cohn, “Unsupervised learning of event classes from
video,” AAAI, pp. 1631-1638, 2010.

[3

[14]



