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Abstract—We present a statistical test for detecting information
leaks in systems with continuous outputs. We use continuous
mutual information to detect the information leakage from trial
runs of a probabilistic system. It has been shown that there is no
universal rate of convergence for sampled mutual information,
however when the leakage is zero, and under some reasonable
conditions, we establish a rate for the sampled estimate, and show
that it can converge to zero very quickly. We use this result to
develop a statistical test for information leakage, and we use our
new test to analyse a number of possible fixes for a time-based
information leak in e-passports. We compare our new test with
existing statistical methods, and we find that our test outperforms
these other tests in almost all cases, and in one case in particular,
ours is the only statistical test that can detect an information leak.

I. INTRODUCTION

Security faults come in all shapes and sizes; it would be
misleading to think of computer systems as either perfectly
secure, or entirely broken and open to abuse. For example,
some systems can be broken by brute force but still provide
some protection against a casual observer, whereas other
systems might leak a small amount of information that could,
over time, be exploited by an attacker. Understanding and
measuring the different levels of security that a system might
offer is vital if we are going to develop a safe, efficient digital
world.

The information theory measurement, entropy H(X), mea-
sures the amount of uncertainty in a probability distribution.
This tells us how hard it would be to guess a value from a
probability distribution. Therefore, the entropy of a distribution
on some secret values X , provides a measure of the initial
security of those values:

H(X) = −
∑

X p(x)log(p(x))

If the results of observing a run of a system are given by a
probability distribution Y , then the remaining uncertainty of
the secret values, after observing the system, is given by the
conditional entropy of X given Y , written H(X|Y ).

Mutual information, I(X;Y ) is defined as the difference
between the initial uncertainty H(X) and the uncertainty that
remains after observing the system H(X|Y ). When X is a
distribution on some secret values in a system, and Y are

the observable actions of a system, the mutual information
between X and Y equals the amount of information about the
secret values that is leaked by the running a system, and is a
popular choice as a measure of the security of a system e.g.
[24], [25], [36], [12], [9]. Simplifying H(X) −H(X|Y ) we
get our measure of the information leakage:

I(X;Y ) =
∑
X

∑
Y

p(x, y)log
(

p(x, y)
p(x)p(y)

)
(1)

The observations that lead to an information leak often
come from a continuous domain (such as time or power
measurements). One way to deal with this would be to split
the continuous domain into a finite number of bins, and
treat two values in the same bin as identical, so making our
data discrete. However, in doing so, we would lose a lot of
the information that these observations hold and we might
possibly miss evidence of an information leak, as we show in
Section V.

In this paper we show that leaks from systems with continu-
ous outputs can be effectively analysed by using a continuous1

version of mutual information, given by the equation:

I(X;Y ) =
∑
X

∫
Y

p(x, y)log
(

p(x, y)
p(x)p(y)

)
dy (2)

The most prudent choice of bin size to use when making
continuous observations of a system Y discrete would be
the highest possible resolution with which any attacker can
measure Y . In general, such a bound on the power of the
attacker will not be known, and may not even exist. If we
make a continuous Y discrete, by placing it into bins, the
value of discrete mutual information (Equation 1) tends to the
value of continuous mutual information (Equation 2) as the
bin size with which Y is measured tends to zero. This means
that continuous mutual information is equal to the information
leaked by the system when the attacker can make arbitrarily
accurate observations of the Y values, and therefore it is a safe

1This is technically a hybrid, continuous/discrete version of mutual infor-
mation, however we will refer to it as continuous to stress the difference
between it and the wholly discrete version.



estimate of the true information leakage from a continuous
system.

We use this continuous version of mutual information to
develop a statistical test to decide when the results of trial runs
of a probabilistic system do or do not indicate the presence
of an information leak. Answering this question is a key step
in finding many practical attacks; often the response times
to particular messages leak some information about what is
going on inside the system (e.g. [26], [11]), and this can be
enough information to completely break a key [17] or reveal
the identity of a user [27]. Such leaks are often immediately
obvious from plots of the sampled data; when the date is more
ambiguous some statistical tests can be used, the particular
test is often picked on an ad-hoc basis, as most tests are quite
specific in the kinds of systems they can be applied to.

The test we propose has the advantage of being general
and based on the theoretically meaningful notion of mutual
information. We show in sections V and VI that our test
outperforms two sample tests and the process of test the
data by placing it into bins and using the discrete version
of mutual information. In particular, in some of our examples
all these other methods fail to detect an information leak that
our new test finds. This shows that the test we propose is not
just of theoretical interest; it is also a practical tool that can
immediately be applied to find information leaks.

It has been proven that there is no universal bound on the
convergence rate for sampled mutual information. However,
we prove that, under some reasonable conditions, the estimate
of leakage from a single bit to continuous values with finite
support2 does converge. This result tells us that we can
accurately approximate mutual information in a reasonable
number of samples.

We use this result to develop a statistical test to detect the
presence of an information leak. To test a particular system,
we perform a number of trial runs and for each run record
the secret value x and the observable action that the system
produces y. If no better distribution of the possible secrets
is known, we use the uniform distribution on the secrets to
generate these samples. We then use kernel density estimation
to estimate the probability density function p(y|xi) for each of
the possible secret values xi. We then calculate an estimate of
the mutual information using the composite rectangle method
and Equation 2. We prove that, if the true leakage is zero,
there is a positive bias in this result. Therefore, we need a
method of telling when a very small result does or does not
indicate the presence of an information leak.

To find out what zero information leakage should look
like, we return to our sampled data and for each pair of
secret and observable actions (x, y) we replace the secret
value with another secret value chosen at random. The mutual
information for this shuffled data must be zero, because now
the secret values are unrelated to the observations. Calculating
the estimate of mutual information for this shuffled data and

2The support of a distribution is the smallest closed interval whose
complement has probability zero. The support is finite if it has a finite upper
and lower bound.

then repeating this process a large number of times gives us a
baseline for what zero information leakage will look like. We
then compare the original estimate of the mutual information
with this baseline for zero leakage, and if it is sufficiently
different, we decide that the data provides evidence of an
information leak. If it is not sufficiently different, we decide
that there is no evidence of an information leak in our data.

The “two-sample” case, where we want to measure leakage
from one of two possible options to a continuous value, is
a common situation in many practical attacks (e.g. [26], [27],
[11]). While our convergence result only holds for these cases,
our test can be used with an arbitrary number of discrete secret
values and observations from a possibly infinite support. We
perform some simulations to show that we get a reasonable
convergence rate and we find that our test outperforms other
statistical two sample tests in most situations. This provides
evidence that our test is the best statistical test to use when
looking for information leaks.

We note that the test we propose is a statistical test and, as
with all statistical methods, the results of the test do not prove
that there is or is not an information leak in a system. Rather
the test we propose is a practical tool to help analysts decide if
some collected data indicates the presence of an information
leak. Likewise, we also do not prove that our test is better
than other existing statistical tests instead, using a number of
simulations and examples, we show that in almost all cases
our test performs better and can find information leaks that
other tests miss.

We use our test to examine some possible fixes to an
information leak in RFID e-passports. It has been shown that it
is possible to trace a given passport by replaying a particular
message and monitoring the response times [11], i.e. there
is an information leak from the identity of the passport to
the response time of the message. The obvious way to fix
this information leak is to pad the response time for error
messages. We examine the effect of padding the response time
by a fixed interval, and by making the RFID chip perform extra
calculations. We show that the fixed interval method does not
completely fix the leak, whereas performing extra calculations
does.

The main contributions of this paper are:
• Showing that continuous mutual information can be used

to measure information leakage.
• Proving that, in some cases, there is an upper bound on

the convergence rate of estimates of mutual information.
• A test for the presence of an information leak, which

uses kernel density estimation to find an estimation of
the mutual information, and then shuffles the data to find
a baseline for zero leakage.

• Using this test to find a fix for an information leak in
e-passports.

In the next section, we describe background and related
work. In Section III we present our convergence result and
in Section IV we develop a test for information leakage. In
Section V we use our test to find a fix for the information
leak in e-passports, and in Section VI we use simulated data



to compare our test with other statistical tests. We conclude
in Section VII. Proofs and further comparisons with other
statistical tests can be found in a technical report [10].

II. BACKGROUND

We use a standard system model for information theoretic
security [24], [12], [9], [3], [20], a system in our framework
consists of a set of secret inputs X , a set of observable
output actions Y , the system is run with a single secret input
x and produces a single observable output y. We require
that, given one particular secret input, the system behaves
probabilistically. This means that if we run the system with
input x then there must be a fixed probability of seeing each
observable output. In statistical terms, given a configuration of
the system x the trial runs of the system must be independent
and identically distributed: factors other than the input x,
that are not accounted for by the probabilities of the outputs,
must not have a statistically significant effect on the observed
actions. We note that we only measure the possible information
leaks from the distribution X to the distribution Y . If we find
no evidence of an information leak from X to Y , that should
not be taken to mean the system is completely safe, as other
ways of interacting with a system might produce different
observable actions which are unrelated to Y .

When X and Y are both discrete sets, mutual information is
a useful metric to measure the amount of information that leaks
from the secrets of the system to the observable actions. Given
two random variables X, Y , we write pX(x) = P [X = x] and
pY (y) = P [y = Y ] for their probability mass functions, and
we write pXY (x, y) for the joint distribution of X and Y . We
will drop the subscripts when they are clear from the context,
and we will use X to stand for both a random variable and
that variable’s distribution. The mutual information of X and
Y tells us how much we can learn about one of these variables
from observing the other, and is given by the equation:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log
(

p(x, y)
p(x)p(y)

)
(3)

We take the logs base two, therefore the value of mutual
information tells us the number of bits of information we learn
about X from observing Y . It takes its minimum possible
value 0 when X and Y are independent, and there is no
leakage from X to Y . The maximum possible value is equal
to the entropy of X , (H(X)), and this indicates that X and
Y are totally dependant.

As described in the introduction, mutual information is
equal to the difference between the uncertainty in X and the
uncertainty in X after observing Y . One way to understand
this is to note that:

p(x, y)
p(x)p(y)

=
p(x|y)
p(x)

i.e., the ratio of the posteriori to the proiori probability.
Therefore, the log term in Equation 3 tells us the information
provided about a particular secret x by a particular observation

y. The average information provided by Y about X is then
found by summing these individual terms for x and y values
times by the probably that those particular x and y occur.

There are a number of ways of calculating mutual infor-
mation for a particular system. If the exact behaviour of the
system is known, it can be calculated by hand. When the
system is simple enough, it may be possible to construct
a formal model in the probabilistic model checker such as
PRISM and use this to calculate the possible information
leakage [7]. Backes and Köpf [3] provide an algorithm for
computing conditional entropy as a measure of unknown-
message side-channel attacks. McCamant and Ernst [23] calcu-
late information flow for C-like programs using a combination
of static and dynamic analysis. Their framework is powerful
enough to find information flow leaks in C programs, however
it can be tripped up by programs with a complicated internal
state space and may require the source code to be annotated.
Malacaria and Heusser have shown that the leakage of a
deterministic program can be found using the CBMC model
checker [15] and Newsome et al. [28] quantify the information
flow along a single path of x86 binaries.

In a recent paper [8] we introduced a method of calculating
the information leakage of a system from trial runs of an im-
plementation alone. This has the advantage of being applicable
to systems that are probabilistic and where the exact internal
behaviour is not known. It can also capture implementation
faults, which could easily be left out of a formal model. We
found that for accurate results it was necessary to collect
a number of samples that was larger than the product of
the size of the domain of secrets and the possible number
of observations. This leads to better performance than many
model checking approaches, but means that it is still not
possible to check systems with particularly large domains of
secrets or observations.

Gierlichs et al. [14] have suggested the use of mutual
information for power analysis of smart cards, and used kernel
density estimation to calculate continuous mutual information
[4]. They look at smart cards that are known to have an
information leak and use mutual information as a distinguisher
to find the best guess at the key. In their framework, a smart
card uses a secret key k to process plain texts drawn uniformly
from some distribution P . The observable behavior of the
device can be denoted by Yk,P . The attacker wishes to guess
either the whole key k, or some part of it, and has a model
of how the leakage occurs Xj,P for a particular (sub)key
j. To discover the device’s secret key the attacker looks for
the j which maximizes the estimation of I(Xj,P ;Yk,P ). This
is a powerful method, which can extract cryptographic keys
from supposedly secure smart cards, using a model of how
the leakage occurs. In contrast, our work presents a general-
purpose statistical test to detect the presence of a leak, and
shows that the estimate used for this test converges quickly.

Other information theory measures have also been proposed
for computer security examples include capacity (e.g [9]),
which is the worst case mutual information, and min-entropy
(e.g. [34]), which gives the difficultly of breaking a system in



a single guess. The methods we present in this paper could
be adapted to these measures. Another popular measure is the
conditional entropy of the secret values and observable actions
(e.g. [3], [20]). This value gives the difficulty of finding the
secret value, rather than the amount of information leaked.
Conditional entropy is equal to the mutual information minus
the entropy of the secret values. Therefore, the test we present
here could easily be transformed into a test of conditional
entropy.

Köpf and Dürmuth [19] and Köpf and Smith [21] use
information theory to analyse time-based side channel attacks.
They treat time as discrete, and use conditional entropy as
their measure of security. They found bounds on the possible
leakage and used these to design effective counter measures
that can guarantee a low level of leakage.

There are a number of results that show that, in the most
general case, estimates of information theoretical values may
converge arbitrarily slowly when calculated from sampled
data [5], [2], [29]. These results might suggest that trying to
calculate mutual information from sampled data would not
be effective. However, we prove that, under some reason-
able conditions, an estimate of mutual information converges
quickly, therefore suggesting that our test will be effective with
a reasonable number of samples.

The statistical test we propose is based on two hypotheses,
the first H0 is that there is no information leak in the system,
and the second H1is that an information leak is present. We
take H0 to be our null hypothesis and we test the sampled
data, at a given confidence level (typically 95%) to see if it is
consistent with this hypothesis. If it is, we conclude that the
sample data does not provide any evidence of an information
leak. If the test fails, then we reject the null hypothesis and
conclude that there is an information leak in the system. We
note that as with any statistical test, we do not provide proof
of truth or falsehood of the hypothesis, rather we aim to
provide a practical method with which to analyse systems for
information leaks.

Our test is nonparametric, i.e., it does not assume an
underlying distribution on the data. When looking at the
two-sample case there are a number of other nonparametric
statistical tests that can be used in order to tell if two samples
came from the same distribution. The most popular of these are
the Kolmogorov-Smirnov (KS) test [13], the BWS test [6], the
Anderson-Darling (AD) test [30] and the Cramér-von Mises
(CVM) test [1]. We compare our new test to each of these
and find that in most cases it has much better performance.
We refer the reader to the cited papers for details of these
tests.

III. A CONVERGENCE RESULT FOR MUTUAL
INFORMATION

A. Motivation

We initially developed our statistical test in order to be able
to verify possible fixes for an information leak in e-passports,
so we use this as a motivating example. E-passports contain an
RFID chip that will broadcast the information printed on the

passport, a JPEG copy of the picture, and possibly the passport
owner’s fingerprints, all this data is signed by the issuing
country. All e-passports conform to the same protocols, but
each of the countries we have looked at use different hardware
and software. The access to this information is protected by
a cryptographic protocol that, amongst other goals, aims to
make the passport untraceable [16] i.e., after observing a run
of a particular passport, it should not be possible to detect the
presence of that particular passport in the future.

Each passport has a unique encryption and MAC key, and
one of the initial messages to the passport is encrypted and
MACed using these keys. This message contains a random
nonce, so cannot be used directly to trace a passport. However,
it is possible to trace a particular passport by recording this
message, and replaying it when we want to check for the
presence of that passport in the future. If the passport we
replayed the message to was a different passport, the MAC
check would fail and an error message would be issued
quickly. If, on the other hand, it was the same passport again,
the MAC check would pass (because the message was formed
using that passport’s unique MAC key). The passport would
then decrypt the message and check the nonce, which would
not match, and only then would the passport send an error
message.

The extra time it takes for the passport to do the decryption
and check the nonce is clearly noticeable. Therefore this time
delay can be used to tell if a particular passport was the
one used in the session than generated the message. So there
is an information leak from the identity of the passport to
the time it takes to receive the error message. The exact
response times vary between runs, due to difference in the
power supplied to the chip, interference, etc. We plot the times
it takes the British, German, Greek and Irish passports to reject
the replayed messages in Figure 1. The dashed, red line shows
the time it takes to reject the message when it is sent to the
passport we are trying to trace, and the solid, blue line shows
the rejection times when it is some other passport. We refer
the reader to a previous paper [11] for full details of the attack.

In terms of our information theoretic model we take our
secret value X to be 1 if we are replaying the message to
the same passport, and 0 if we are replaying it to a different
passport from the same country (passports from different
countries can be distinguished by other means [32]). We
take Y to be the response time of the error message. The
information leakage from the passport can then be measured
as I(X;Y ).

Looking at the plotted data in Figure 1 the information leak
is clear; there is no particular need to use mutual information
to measure this leak. However, we are interested in finding
a simple fix for this leak, and when trying to fix the leak, it
would be easy to get the plots to look similar but for the leak
to still to exist and be detectable with the right analysis. So
when trying to fix this leak we do need a statistical test that
can tell us with some certainty if a leak exists.



(a) UK passport on reader (b) Greek passport on reader

(c) Irish passport on reader (d) German passport on reader

Fig. 1. Sampled Times from Replaying a Message to the Same or a Different Passport

B. Continuous Mutual Information

We measure the response time of the passport error message
by adding a clock to the Python program that we use to
interact with the passport. This gives us time measurements, in
seconds, to 9 decimal places. Given our measuring framework
only about the first 5 decimal places of the measurement could
contain meaningful data, but this still presents us with a prob-
lem, when treating this as discrete data. For discrete sampling,
the number of samples needed should be proportional to the
number of possible observations, so using the data to 5 decimal
places would require tens of thousands of samples, taking days
to collect. Rounding the data further, would mean we would
lose much of the information in the measurements, so while
fine for detecting leaks, we could not rely on this to show the
absence of an information leak.

The problem here is that discrete mutual information treats
each observation as separate and unique; there is no notion
of a particular observation being more or less similar to any
other. Therefore, when treating time measurements as discrete
values we lose some of the information in the measurements,
and may miss an information leak or need more samples that
could be collected in a reasonable amount of time.

We solve this problem by treating the time measurements as
continuous values. Instead of estimating a discrete probability
mass function (pmf) from the observations of Y , we estimate
a continuous probability density function (pdf). From this we
calculate an estimate of the mutual information for the system:

Î(X;Y ) =
∑
x∈X

∫
y:p̂(x,y)>0

p̂(x)p̂(y|x)log
(

p̂(y|x)
Σxp̂(x′)p̂(y|x′)

)
dy

(4)
which is derived from Equation 2. This equation represents
the most general case, when we are estimating both the X and

the Y distributions. If we do not have a source from which
to estimate X , we can generate our samples using a uniform
distribution and either estimate X from that or plug in the
exact values for p̂(x).

If we take N samples (X1, Y1), . . . , (XN , YN ), we estimate
the pmf p̂(x) using a simple proportion:

p̂(x) =
1
N

N∑
i=1

χ{Xi=x}

where χB is the indicator function of a set B (ie., χB(x) = 1
if x ∈ B and otherwise χB(x) = 0).

We write (x, Y x
1 ), . . . , (x, Y x

Nx) for the Nx samples that
used the secret value x. The mixed conditional distribution
of continuous y given discrete x is estimated using the kernel
density estimate (see e.g. [33]):

p̂(y|x) =
1

Nxh

Nx∑
i=1

K

(
Y x

i − y

hN

)
This equation estimates the probability of a particular value
of y given some x by looking through every observation that
resulted from x, i.e., Y x

1 , . . . , Y x
Nx. For each of these observed

values, we look at how far it is from the value we want to
estimate y and apply the kernel function K to decide how that
particular observation should affect our estimate at y. Here h
is the bandwidth, this value controls the distance from y at
which an observation will have an effect on our estimate of
p(y|x).

There are a number of possible choices for the bandwidth
and the kernel; many of these are particularly good when the
observations are known to follow a given pattern, (e.g. the sum
of normal distributions). As we do not want to make particular
assumptions about the observations, we use a general-purpose



bandwidth and kernel that will work reasonably well in all
situations.

Silverman [33] provides a comparison of a number of
different bandwidths and kernel functions. He suggest the
following general purpose bandwidth:

hOPT = 1.06SD(Y )N−1/5, (5)

where SD(Y ) is the standard deviation of Y . and We use
the Epanechnikov kernel, which lets any observation, within
h of y, have an affect of the estimate on y that tails off
quadratically:

K(u) =
3
4
(1− u2)χ{|u|≤1}

If the user of our test has particular knowledge about the
distributions of Y , e.g. it is approximately a sum of normal
distributions, then other kernels and bandwidths may be used.
Once we have we have an estimate of p(y|x) for every possible
value of y we can use the composite rectangle method to
compute the mutual information estimate from Equation 4.

C. A Convergence Result for Zero Mutual Information

To make accurate statements about our system using the
value Î(X;Y ) from Equation 4, it is useful to know how it
relates to the true value of mutual information, and how it may
vary.

It is known that there is no universal rate at which the error
in estimation of mutual information goes to zero, no matter
what estimator we pick, see [2] and [29]. A better, and more
positive, result can be obtained by looking at the convergence
rate in the case of zero leakage, under reasonable regularity
conditions.

We assume that the pairs {Xi, Yi}, 1 ≤ i ≤ N are
independent and identically distributed (IID) satisfying
A1. Yi’s are bounded continuous real-valued random vari-

ables with finite support.
A2. For u = 0, 1, p(u, y) has a continuous bounded second

derivative in y;
A3. K has a finite support symmetric around zero, and

integrates to 1.
A4. h → 0, Nh2

N →∞ and Nh4
N → 0 as N →∞.

The first condition states that the observations must be
continuous and they must have finite support, i.e., the small-
est closed interval whose complement has probability zero
must have finite upper and lower bounds. This condition is
important for our convergence proof, but as we will see in
Section VI our test works well in a number of cases where
the observations have infinite support.

Condition A2 restricts our proof to measuring the leakage
of a single bit. We hope to be able to remove this restriction
in further work, and we show that our test works on some
multi-input cases in Section VI. Condition A2 also restricts the
observation’s distribution to have a bounded second derivative,
meaning that it must be reasonably smooth. We would expect
this from any observations collected from a real system, and

this condition can easily be checked by a visual inspection of
a plot of the data.

Conditions A3 and A4 restrict the possible kernels and
bandwidths we may choose. These conditions are easy to fulfil,
and are met by the choice of kernel and bandwidth we suggest
above.

Under the null hypothesis that there is no information leak,
i.e.

H0 : X and Y are independent,

a large sample distribution for ÎXY is given by the following
theorem:

Theorem 1: Under H0 and the assumptions A1-A4, we
have that Nh−1/2(ÎXY /log (e) − C1/(Nh)) converges
to a normal distribution with mean 0 and variance
C2 = 0.5

∫
(
∫

K(w)K(v + w)dw)2dv
∫

χp(y)>0 dy as
N →∞, where C1 = 0.5

∫
K2(v) dv

∫
χp(y)>0 dy.

The proof of this theorem is available in a technical report
[10]. We note that C1 and C2 only depend on the choice of
kernel function K and the support of Y . Therefore, they will
be constant for any set of sampled data. The value C1/Nh is
the bias in the result, therefore, in the case of zero leakage we
would expect Î(X;Y ) to be close to this value. The log(e)
term is required because we are using logs base 2.

The
∫

χp(y)>0 dy term in C1 and C2 equals the total length
of the regions for which the probability of y is not zero. Our
theorem only applies in the case that this is not infinite, hence
the requirement A1 that the support is finite.

By rearranging the terms in Theorem 1 we can find the
distribution of ÎXY when X and Y are independent. When the
sample size is large enough, ÎXY approximates the following
normal distribution:

ÎXY ∼ N
(

C1log (e)
Nh

,
C2(log (e))2

N2h−1

)
We note that the standard error (the standard deviation

above) converges to 0 faster than the bias (the mean). So for
a large number of samples the bias will be the dominating
factor. Looking at just the mean we can observe that:

ÎXY ≈ C1log (e)
Nh

(6)

These results tell us that the convergence rate depends on the
bandwidth h. Condition A4 requires h to be strictly between
N−1/2 and N−1/4. If we take h = N−(1/4+δ) for a small
positive δ, Equation 6 tells us that:

ÎXY ≈ C1log (e)
N.N−(1/4+δ)

≈ O(
1

N (3/4−δ)
)

This tells us the rate of convergence for our estimate of
mutual information under the conditions A1 to A4 and the
independence of X and Y :



Corollary 1: Setting h = N−(1/4+δ) for a small
δ, 0 < δ < 1/4, a rate of convergence of N−(3/4−δ) for the
MI estimate Î(X;Y ) can be achieved.

Proof Sketch: Theorem 1 tells us that Î(X;Y ) converges
to 0 at the same rate as C1/Nh, which is C1N

−(3/4−δ) for
our choice of h. Hence the result follows.

This corollary implies that when conditions A1 to A4 are
satisfied the mutual information estimate is an efficient one due
to its high rate of convergence, and hence the performance
of the mutual information test statistic may be expected to
improve quickly with larger sample sizes. In turn, this means
that the test we propose below will produce good results in a
reasonable number of samples.

We conjecture that we will get good, accurate results in a
much wider range of situations, including all those that we
would expect to see when looking for information leaks in
a computer system. In Section VI we perform a number of
simulations that show good results when looking at systems
with many secret values (relaxing Condition A2) and some
distributions with infinite support (relexing Condition A1),
such as the normal and t-distribution. As future work we would
like to relax the conditions on our system and prove a good
convergence rate in a wider range of situations.

IV. A STATISTICAL TEST FOR INFORMATION LEAKAGE

We test a system by collecting samples from a number of
trial runs. For each trial we randomly pick a secret value x and
then run the system and record the public observable output.
This gives us a pair of values (x, y), we write Yx for the
distribution of y for the given x. We then run enough tests to
obtain a smooth line for y, for all possible x values. There
are a number of statistical tests that can tell us when we have
enough data, e.g. cross validation (see e.g. [18]) however, it
is usually clear from a plot of the data alone.

For the two-sample case, with known, finite support, we
could use Theorem 1 to calculate the bias and construct the
confidence interval for values that would be compatible with
zero information leakage. We choose not to make this the basis
of our test because, first, this interval is not trivial to calculate
and so this does not lend itself to automation, and second we
want to develop a test that can also be applied to systems
with large secret domains and possibly infinite support for the
observations.

From our sampled data, we construct new data sets that are
guaranteed to have a mutual information of zero: For each
sampled pair (x, y) we replace x with another value chosen
randomly from the distribution X . This gives us a new set
of data in which the x value has no relation to the y and
so we know that the mutual information for this data set is
0. We now repeat this shuffling process a large number of
times3 and calculate the Î(X ′;Y ) statistic for each data set to

3100 or more shuffles will be enough to get a useful baseline for zero
leakage, but, if practical, a few thousand shuffles will make the test more
powerful.

give us I1, . . . IK . As these new data sets will have the same
support as the true data set, in the two-sample case, the mean
of these values will approximate the bias, giving us C1 from
Theorem 1, and the variance of these results will approximate
C2. Therefore these I1, . . . , IK values tell us exactly what
zero information leakage should look like for the system we
are currently testing.

We now compare the mutual information estimate
I = Î(X;Y ) to the I1, . . . IK baseline. To perform the test at
a level α we then check that that the I value is greater than
the 100(1−α) percentile of the baseline. If it is then we reject
the null hypothesis and conclude that there is an information
leak. Alternatively, we can estimate the p-value for this
test statistic [31], which is equal to the proportion of the
I1, . . . IK , which are larger than I . A p-value approximates
the probability of observing a test statistic at least as extreme
as the actual result, assuming the null hypothesis is true.
Therefore, a p-value close to 0 may be taken as evidence of
an information leak. More formally, our test consists of the
following steps:

Test 1: Given a system with observable actions Y and
secret values X , with the distribution X . To test for an
information leak, under the null hypothesis that there is no
leak:

1 Picking xi from the distribution X , collect samples Ysi

to estimate p(y, xi), check that enough samples have been
collected to correctly estimate p(y, xi), (e.g. by cross
validation, or visual inspection of the results).

2 As described in Section III.B, calculate the mutual infor-
mation test statistic I for this data using kernel density
estimation, the composite rectangle method and Equation
4.

3 Combine all the sampled observations Ys0 , . . .YsK in
one single sample which we denote by Ys .

4 For each element of Ys , simulate a new random x using
the distribution X . Denote the value of the estimated
mutual information by I1. We repeat this step a large
number of times2, say K, and obtain the “bootstrapping”
samples Ij ; j = 1, 2 · · · ,K.

5a If the test statistic I is above the 100(1−α)th percentile
of the sampling distribution of I1, · · · , IK , reject the null
hypothesis and conclude that there is a leak.

5b Alternatively, an estimated p-value of the test statistic can
be computed as the percentage of I1, · · · , IK exceeding
the observed MI for the test sample, say I .

We provide software support for this test in the form of
a Java jar file and an R program. The Java jar file can be
run on a text file that contents sampled data in the form of
(secret value, observed action). The program
then follows the steps described above and computes the p-
value. As the R language is the de-facto standard language
amongst statisticians, we provide an implementation in R as
a way of making our test more accessible to the statistics
community.



V. FIXING E-PASSPORTS

We now use out test to compare two possible fixes for the
e-passport information leak. We first examine the effect of
simply padding the response time, and then look at rewriting
the passport code to remove the leak. We also compare our
test with other statistical tests from the literature, and we find
that our test performs the best, detecting attacks that all of the
other statistical tests miss.

For this test, we replay a message to a passport and look for
any relationship between the time it takes a passport to respond
and whether or not the message came from that particular
passport. In our scenario, X is 1 if the passport we replay
the message to is the same one used in the session where
the message was recorded, and X is 0 if the message did not
come from this particular passport. The continuous variable Y
in this example is the time it takes to reject the message. The
passport is considered to be secure if, and only if, there is no
evidence of dependence between X and Y , i.e., the mutual
information is zero.

Each country has its own implementation of the e-passport,
and we found that the time taken for passports to communicate
with a reader has the same distribution when they have the
same nationality. We therefore tested passports from four
different countries: Germany, Greece, Ireland and the UK. For
each of these we first calculated the passport’s cryptographic
key from the date of birth, date of expiry and passport number.
Then, using a basic RFID reader, we ran the access protocol
and recorded the message we needed to replay. For the
German, Greek and Irish passports, we replayed the message
to the passport 500 times, and then sent the message 500 times
to a different passport from the same country. For the British
passport, we replayed the message to the passports 1000 times.
We added a clock to our computer program to exactly measure
the time between when the replayed message was sent and
when the passport’s error message was received by the reader.
A plot of this data is given in Figure 1.

The first two columns of Table I presents the values of
the mutual information test statistics computed following the
methods described in Section IV and the corresponding p-
value estimates based on 10000 bootstrapped samples. It is
observed that the mutual information estimates are very near
to 1 for all four passports considered and hence it is obvious
that the passports can be traced.

A. Testing a time delay based fix

A quick and easy solution to this problem would be to
simply add a fixed time delay in the case that the passport’s
MAC check fails. This solution has the advantage of being
easy to test, and easy to implement.

To test if this solution would fix the information leak we
experimented with adding various constants to the response
times. Adding the difference of medians to the short set of
response times seemed to work best in terms of reduction of
the mutual information estimates. The corresponding MI test
statistics are presented in the third column of Table I. All the
MI values show significant reduction, and hence the fix may

Nationality MI (no padding) p-value MI (padded) p-value
British 0.9542736 0 0.09446402 0
Irish 0.9999755 0 0.04872853 0

Greek 0.9795026 0 0.01775579 0.075
German 0.983794 0 0.03101871 0

TABLE I
A COMPARISON OF THE MUTUAL INFORMATION ESTIMATES OBTAINED
FOR DIFFERENT PASSPORTS BEFORE AND AFTER APPLYING THE TIME

PADDING BASED ON DIFFERENCE OF MEDIANS.

seem to be working. However, if we look at the estimated p-
values presented in the last column of Table I, we can see that
this is not the case. Only for the Greek passport the p-value
increases from 0; hence the problem is not solved for any of
the other 3 passports. For the Greek passport, at a 5% level
of significance we would not reject the null hypothesis. A p-
value this low clearly indicates that an information leak is a
high possibility.

It seems that a time padding fix is not very efficient,
although it does make the attack an order of magnitude harder
to perform. It is possible to accurately identify e-passports
with three messages [11]. If the response time was padded as
we describe here the attacker would need dozens of messages
to achieve a similar level of accuracy. However, to devise
a completely leak-proof passport, a better fix is obviously
required.

B. A comparison with other tests

There are a number of existing other nonparametric tests
that can be used to test if two samples came from the same
distribution. The most popular of these are the Kolmogorov-
Smirnov (KS) test [13], the (BWS) test [6], the Anderson-
Darling (AD) test [30] and the Cramér-von Mises (CVM) test
[1].

Table II compares the p-values of these other nonparametric
tests applied to the simple time padding fix for each of the
passport types we examined. They agree with the conclusions
of our mutual information test for the British, Irish and Greek
passports. However, every other test failed to detect a leak
in the padded German passport samples. To check that this
really was an information leak from the time-padded German
passport data, we collected two more sets of data; in each case,
our test could correctly trace a passport after time padding, but
all of the other tests failed to do so. To ensure against false
positives we generated two sets of timed data from the same
passport, i.e., with no information leak, and, as expected, none
of the tests found false evidence of a leak.

This result clearly demonstrates the superior sensitivity of
our test, and justifies its use to test for information leaks in
this situation. We present further evidence of the superiority
of our test, using a number of simulations in Section VI.

A comparison with discrete mutual information: Another
approach to analysing this data would have been to truncate
the times, treat them as discrete values and use discrete mutual



Nationality MI test KS test CVM test AD test BWS test
British 0 0 0 0 0
Irish 0 0.001 0 0 0

Greek 0.075 0.718 0.544 0.367 0.408
German 0 0.257 0.743 0.302 0.271

TABLE II
A COMPARISON OF THE P-VALUES OF DIFFERENT TEST STATISTICS
OBTAINED FOR DIFFERENT PASSPORTS AFTER APPLYING THE TIME

PADDING BASED ON DIFFERENCE OF MEDIANS.

information to analyse the data (as described in [8]). We
tried this approach on the padded times, rounding the time
measurements to 3, 4 and 5 decimal places, with 500 samples.
None of these tests detected the information leak; rounding to
3 decimal places removed the leak. When rounding to 4 or 5
decimal places the estimate of mutual information was larger.
However, with just 500 samples these estimates were still
inside the confidence interval for values that were compatible
with zero leakage, and so did not constitute evidence of a leak.

Collecting many more samples would have led to the
detection of a leak. In general, the discrete approach requires
more samples than the product of the number of possible
secrets and observations. Collecting enough data to ensure
a correct analysis when measuring time to 5 decimal places
could have taken many hours.

This shows that using continuous mutual information does
make better use of the data than the purely discrete test. In
this case, using a purely discrete approach failed to detect the
information leak, whereas continuous mutual information did
detect the leak. Making the continuous data artificially discrete
using the histogram approach and putting it into bins does not
work.

C. Building a better passport

Our test shows that adding a fixed time delay will not fix the
information leak in e-passports. So instead, we tried changing
the passport program to decrypt the message sent to it, even if
the MAC check failed. While this may seem like an obvious
solution, it is more complicated to check, as it requires a
reimplementation of the e-passport protocols, and it requires
the passport to try to decrypt messages that may have been
corrupted in transit.

None of the countries that have issued e-passports have re-
leased the source code or implementational details of the RFID
chips. However, the Digital Security group at the University of
Nijmegen have released the source for a full implementation
of the e-passport, called the “JMRTD” package4. This imple-
mentation uses “Java Card”, which is a platform that makes
it possible to run programs written in a subset of Java on a
JCOP compatible RFID card.

We tested this JMRTD version of the e-passport and found
that the information leak occurred. To fix the problem we
rewrote the code that handled the authentication process so

4http://jmrtd.org/

that even if the MAC check failed, the message body would
still be decrypted. The only file that needed to be changed
was the JMRTD’s PassportService.java file; we note that we
also had to disable a check of the data format of the decrypted
message, which may also have led to an information leak.

Once the initial authentication protocol has been run, all of
the signed data can be read and copied off the passport. We
used the data read from a genuine passport, and our rewritten
authentication protocol to make a working e-passport. We
collected 500 samples from this passport and we applied our
test to investigate if our rewrite fixed the leak. We found
a p-value of 0.486, indicating that there was no evidence
of an information leak. While other information leaks may
still exist, and more sensitive measuring equipment might
turn up different results, these measurements suggest that this
particular leak has been fixed.

As our implementation follows the specification [16] exactly
and the data is copied from a real e-passport, and is therefore
signed by the UK government, our new passport chip should
be completely functional. We tried out our new e-passport with
a number of publicly available e-passport reader implementa-
tions and it functioned perfectly as a passport. This gives us,
perhaps, the only untraceable e-passport chip in the world.
We had hoped to try it out on the automated immigration
machines used at Birmingham International Airport, however
the university lawyers we spoke to insisted that we did not
attempt this without written permission from immigration staff
at the airport, and so far airport staff have not responded to
our requests.

VI. SIMULATIONS AND COMPARISONS WITH OTHER TESTS

The comparison of our test with other statistical tests in the
last section showed that our new test was the best at analysing
the information leak from the passport data. In this section,
we generate some data from known distributions and make
some more comparisons. We find that our new test is better
at distinguishing two distributions in all situations, apart from
the case of two distributions that differ only by their mean.

We first compare samples taken from the different uniform
distributions. As these distributions have finite support, The-
orem 1 applies and guarantees a good convergence rate. To
examine how our test works when the sampled data comes
from distributions with infinite support we compare the results
taken from a number of normal and t-distributions. We then
run our test on some multiple input cases. In all of these
simulations, we get a good rate of convergence.

For our simulations, we take m samples from one distri-
bution F0 and n samples from another distribution F1 and
then test the null hypothesis that F0 = F1. We use the
Epanechnikov kernel based estimate and the bandwidth chosen
according to Equation (5) to obtain the MI test statistics. We
then use the following algorithm to compute the power of the
mutual information test:

1) Obtain samples Y0 of length m from F0 and Y1 of
length n from F1. Combine them in one single vector
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Fig. 2. Estimated power of tests based on 1000 replications comparing U(−1, 1) with U(−a, a) for different values of a.
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(b) Sample size m=n=500

Fig. 3. Estimated power of tests based on 1000 replications comparing U(0, 1) samples with samples from U(0, a) distributions for different values of a.

which we denote by Y.
2) We simulate a random sample of size N := m + n, say

X1 from the Bernoulli distribution with P (1) = m/N
and compute its mutual information with Y. Let us
denote the value of the estimated mutual information
by I1. We repeat this step 10,000 times, and obtain
Ij ; j = 1, 2 · · · , 10, 000.

3) We use the 100(1 − α)th percentile of the sampling
distribution of I1, · · · , I10,000 as the cut-off to be used
for rejection for the test with level α.

4) We now again simulate samples Y0 of length m from
F0 and Y1 of length n from F1, and again combine
them in one single sample which we denote by Y.

5) Define a 0-1 valued vector X, whose j-th element, xj ,
is 0 or 1 according to whether the jth element of Y, yj ,
is from Y0 or Y1, i.e. X is a vector of length N :=
(n + m) with n zeroes followed by m 1s. Compute the
mutual information estimate between Y obtained in step
4 with the obtained X. H0 is rejected if the obtained
mutual information estimate is greater than the cut-off
obtained in step 3.

6) Repeat steps 4 and 5 1000 times to estimate the power
of the test, given by the proportion of rejections of H0.

Following the methods described in [35] and [6], the cut-

offs of the CVM test and the BWS tests for 5% level are
estimated by obtaining the sampling distribution of the said
test statistics for relevant values of m and n based on samples
from the standard normal distribution of sizes m and n. The
sampling distribution is computed based on 10000 samples.
We compare the percentage of rejections of H0 by the tests
based on 1000 random pairs of samples of two sizes, 100 and
500. When the sample sizes grow larger, all the tests start
performing well; we have also explored the power of the tests
when the samples are of size 2500. As all the tests perform
very well for that size, we omit the large size samples from
our discussion for the sake of brevity.

As examples of distributions where the support is finite,
so that Theorem 1 holds and the mutual information based
test statistic works well, we compare the uniform distribution
on (−1, 1) with other symmetric uniform distributions on
intervals (−a, a). We also compare the uniform distribution
on the unit interval with the uniform distributions on intervals
(0, a), for values of a gradually increasing from 1. The results
are shown respectively in Figures 2 and 3. These graphs
show the rate at which the test rejects the null hypothesis
and decides the distributions are different. Going left to right
the distributions become more different, so as expected the
rejection rate rises.
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Fig. 4. Estimated power of tests based on 1000 replications comparing N(0, 1) samples with N(0, σ2) samples.
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Fig. 5. Estimated power of tests based on 1000 replications comparing N(0, 1) samples with samples from t distributions with various degrees of freedom.

Calculating the results to the 5% level means that all of the
tests have a similar false positive rate, when the distributions
are the same (computing the p-value reduces the risk of false
positives). As soon as there is a difference in the distributions,
our mutual information test (marked MI on the graphs) has
the best rejection rate.

For the tests in Figure 2, the two distributions have the
same mean but a different standard deviation. Our test fares
significantly better than the others, especially with the smaller
number of samples. The second set of test in Figures 2, have
a different mean and standard deviation, in this case all of the
tests do better, but our test is still the best at distinguishing
the distributions.

A. Tests with infinite supports

We now look at how our test handles some cases of similar
distributions with infinite support. While Theorem 1 does
not apply in this case, our test is still useable, as are the
other two sample tests, so it is interesting to compare their
performance. We first compare samples from the standard
normal distribution with samples from normal distributions
with zero mean and variance increasing away from 1. The
results are summarised in Figure 4. The mutual test clearly
appears to be the most powerful, as can be seen in Figure 4.

We next observe the discriminatory power of the tests when
a sequence of distributions is compared with their eventual
limit: we compare samples from the standard normal distribu-
tion with t-distributions with gradually increasing degrees of
freedom (the t-distribution is a lopsided normal distribution for
low degrees of freedom and tends to the normal as the degrees
of freedom increase). The results are presented in Figure 5.
The mutual information test exhibits superior discriminatory
power when comparing the standard normal distribution with
t-distributions with different degrees of freedom. Whereas for
the other tests power decreases to around 0.05 very qucikly,
the power of the MI test decreases much more slowly; for
example, when tested on the basis of 500 samples, the MI
test is the only test with any discriminatory power between
the standard normal and the t-distribution with 20 degrees of
freedom.

For a further comparison, we look at two distributions with
different shapes but equal means and variances. We compare
the N(0, 1/12) distribution with the uniform distribution on
the interval (−0.5, 0.5) for various sample sizes. The results
are presented in Figure 6. In this situation, the mutual infor-
mation test is the only test that can detect a difference with
one hundred samples. The BWS test and the AD test started to
reliably detect the difference between these distributions with



six and seven hundred samples. The KS and the CVM tests do
not perform well, this suggests that these tests are over reliant
on the value of the mean and the standard deviation of the
two samples when deciding if they are different.

There was only one case in which our test was not better
than the other tests we discuss. This was when the two sets of
samples were drawn from distributions that were identical in
every aspect, except for a small different in their means. Figure
7 show the results of running the test with samples drawn from
N(0, 1) and N(µ, 1) for a range of µ. These graphs shows
that when the difference in the mean equals 0.25 and 0.5 the
other tests detect more of a difference. This would seem to be
because our test is sensitive to a great deal of different factors,
so when all of these factors are identical, apart from the mean,
our tests find less of a difference than the other tests.

B. Tests with multiple inputs

In this subsection, we give some results from applying
our test to systems with many possible secret values. While
Theorem 1 only guarantees a good convergence rate in the
two-sample case, our test is sound for any number of possible
secret values, and it has demonstrated a good convergence rate
for all of the systems we have looked at.

For our first example we look at tracing a passport when
we do not know the nationality of the passport we are
replaying the message to. Here we have 5 possible secret
values depending on which passport we replay the message to.
X=0:the UK passport we are trying to trace, x=1:a different
UK passport x=2:a French passport, x=3:Greek, x=4:Irish and
x=5:German. As expected, our test showed that the informa-
tion leak remained, and the estimate of mutual information
was, much higher: 2.31. This is because, as well as learning
if the target passport is the one they are trying to trace, the
attackers can also learn the nationality of the bearer.

Next, we tried the same test with data from the rewritten,
fixed passport and 5 other countries. Our test showed that an
information leak remained and the mutual information was
2.33. This was because each nationality of passport had a
different response time. So while our fix of the information
leak in e-passports makes a single passport untraceable, the
nationality of the passport is still leaked. We note that it
is possible to find the nationality of a passport by other
means [32], [11], and that fixing this particular leak would
require a level of international cooperation that is, most likely
impossible to achieve.

As a second demonstration we looked at an example of Sim-
ple Power Analysis, taken from a book by Mangard, Oswald
and Popp [22]. Simple Power Analysis involves observing the
power usage of a smartcard, and using these observations to
deduce what values the smart card is processing. So in this
situation the secret values X are a secret (8-bit) byte stored in
the chip and the observations Y are the measurements of the
power used by the card. Mangard, Oswald and Popp construct
a smart card, and show that 362ms into a particular operation
the power used is:
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Fig. 6. Plot of the estimated power of various tests based on 1000 replications
comparing N(0, 1/12) samples with samples from U(−0.5, 0.5) distribution
for different sample sizes.

●

●

●

●
● ●

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

µ

R
e

je
c
ti
o

n
s
(%

)
● MI test

KS test
CVM test
AD test
BWS test

Fig. 7. Plot of the estimated power of various tests based on 1000 replications
comparing N(0, 1) samples with samples from N(µ, 1) distribution for 100
samples.

P = Pdata + Pel.noise + Pconst (7)

where Pconst = 137.57mV is the constant power usage of the
card, Pel.noise N(0, 1.63) is noise in the system, and Pdata

depends on the hamming weight of the secret byte (i.e., the
number of bits set to 1) as follows:

Hamming Weight Power Hamming Weight Power
0 -22.67 5 4.96
1 -16.92 6 10.53
2 -11.35 7 16.68
3 -5.86 8 25.12
4 -0.49

Mangard, Oswald and Popp analyse their smart card by
taking 200 samples for each of the possible 256 secret values.
They round their data to the nearest millivolt and treat it has
discrete, and then calculate the leakage as the signal to noise
ratio of the observations as their measurement of leakage.

We simulated data for the power usage of this smart card
using Equation 7, and applied our test. We take only 10



samples for each secret value; this results in a p-value of 0,
clearly showing that there is an information leak. The estimate
of mutual information is 2.65, which tallies with Mangard
et al.’s measure of the leakage. We are able to perform this
analysis with an order of magnitude fewer samples because
treating the measurements as continuous provides us with
more information, and our shuffling method of constructing
a test for zero leakage is extremely sensitive.

We note that this analysis does not recover the key; rather
its aim is just to detect the existence of a leak. Gierlichs et
al.’s [14] present a mutual information based framework that
can be used to learn the key from observations of the smart
card, which is already known to leak information. Our method
is a general-purpose test to detect the presence of a leak in
anything from a smart card or an e-passport to a multi-threaded
program.

VII. CONCLUSION

We have shown that continuous mutual information can be
an effective measure of information leakage for probabilistic
systems. The discrete version of mutual information treats
all the observations of a system as unrelated; when there
is a natural, dense ordering on the data, discrete mutual
information ignores the extra information this ordering pro-
vides. Continuous mutual information, on the other hand, does
take account of this ordering and therefore provides a better
measure.

We have used continuous mutual information to develop a
statistical test for the presence of an information leak. When
calculating an estimate of mutual information for a proba-
bilistic system from sampled data, there will be some noise in
the results. Given some sampled data, we create a number of
artificial samples with the same observable public values and a
randomly chosen secret value. The mutual information of this
new data set will be zero, because now the secret values are
unrelated to the observable output. This shows us what zero
information leakage looks like for a particular system and we
can then compare our original sampled data to this profile for
zero leakage.

We show that our test is a practical way of looking for
information leaks by analysing some possible fixes for an
information leak in e-passports. We first experiment with
adding a simple time delay to one of the messages; this
massively reduces the information leak, but our test shows
that it is still present and could still be exploited. We try out
some other two-sample statistical tests from the literature and
we find that in some cases all of the other tests would miss
an information leak that we could detect. We next experiment
with implementing the passport protocols and this does remove
all traces of the leak, giving us, possibly, the only untraceable
e-passport in the world.

Using a number of simulations, we found that our new
test outperformed the existing two sample tests in almost all
situations. We believe one of the reasons our test performs well
is that it is based on the powerful notion of mutual information.
We have benefited from a great deal of work carried out by

the computer security community, which has shown that in-
formation theory to provide powerful measures of information
leakage. Another possible reason our test outperforms the older
Cramér-von Mises test [1] and Kolmogorov-Smirnov test [13],
may be because these tests were designed to be carried out by
hand. Therefore, these tests make a number of assumptions
in order to simplify the calculations. The more recent two
sample tests that we use as a comparison are the current state-
of-the-art tests for deciding when two sets of sampled data
come from the same distribution. Our mutual information test
outperformed all of these tests.

Acknowledgments: We would like to thank Chris No-
vakovic, Erica Butler and the anonymous referees who made
helpful comments about this paper.

REFERENCES

[1] T. W. Anderson. On the distribution of the two-sample Cramér-von
Mises Criterion. Annals of Mathematical Statistics, 1962.

[2] A. Antos and I. Kontoyiannis. Convergence properties of functional
estimates for discrete distributions. Random Structures and Algorithms,
19, 2002.
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