
Analysing the MUTE Anonymous File-Sharing
System Using the Pi-calculus

Tom Chothia

CWI, Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands.

Abstract. This paper gives details of a formal analysis of the MUTE
system for anonymous file-sharing. We build pi-calculus models of a node
that is innocent of sharing files, a node that is guilty of file-sharing and
of the network environment. We then test to see if an attacker can dis-
tinguish between a connection to a guilty node and a connection to an
innocent node. A weak bi-simulation between every guilty network and
an innocent network would be required to show possible innocence. We
find that such a bi-simulation cannot exist. The point at which the bi-
simulation fails leads directly to a previously undiscovered attack on
MUTE. We describe a fix for the MUTE system that involves using au-
thentication keys as the nodes’ pseudo identities and give details of its
addition to the MUTE system.

1 Introduction

MUTE is one of the most popular anonymous peer-to-peer file-sharing systems1.
Peers, or nodes, using MUTE will connect to a small number of other, known
nodes; only the direct neighbours of a node know its IP address. Communication
with remote nodes is provided by sending messages hop-to-hop across this overlay
network. Routing messages in this way allows MUTE to trade efficient routing
for anonymity. There is no way to find the IP address of a remote node, and
direct neighbours can achieve a level of anonymity by claiming that they are just
forwarding requests and files for other nodes. Every node picks a random pseudo
ID that it uses to identify itself. There is a danger that an attacker may be able
to link the pseudo ID and the IP address of it direct neighbours, and thus find
out which files the neighbours are requesting and offering.

We analyse MUTE by building pi-calculus processes that model a node that
is guilty of sharing files, a node that is innocent of sharing files (but does for-
ward messages) and a third pi-calculus process that models the rest of the net-
work. These processes are connected by channels, which can be bound by the
pi-calculus new operator or left free to give the attacker access. We use the pi-
calculus because it is expressive enough to define an accurate model of MUTE,
while still being simple enough to analyse by hand or with automatic tools. There
is also a large body of theoretical and implementational work to support analysis
1 According to statistics at http://sourceforge.net/projects/mute-net MUTE has

been downloaded over 850,000 times

in the pi-calculus. We do not make an explicit model of the attacker, rather we
aim to show that for every network in which the attacker connects to a guilty
node, there is another network in which the attacker connects to an innocent
node, and that the two networks are indistinguishable. For this we use weak bi-
simulation, which holds between pi-calculus processes if and only if all observable
inputs and outputs of a system are the same. We show that the environment can
provide “cover” for a guilty node by showing that for every guilty node G and
environment E there is an innocent node I and another environment E′ such
that G | E is weakly bi-similar to I | E′. In general, weak bi-simulation is nec-
essary, but not sufficient, to show anonymity because it says nothing about how
likely the actions of the two processes are. However, once a weak bi-simulation is
shown to hold, we can prove that the guilty nodes have “possible innocence” [22]
by showing that, assuming a fair scheduler, the matching actions in the weak
bi-simulation occur with a non-negligible probability.

The contributions of this paper are the formal model of the MUTE system,
the description of an attack on MUTE, found by analysing this model, and a fix
for the attack. We note that this attack was only found while testing the model,
the model was not built with this attack in mind, and while the checking of the
model was performed by hand, it is a mechanical procedure that does not require
any special insight. Furthermore, MUTE has an active development community
that, in over two years of development, had not found this serious fault, as had
a number of academic papers that tried to examine or extent MUTE [2, 5, 17].

There are a number of other anonymous peer-to-peer file-sharing systems [1,
28] and theoretical designs [5, 25], for more information we direct readers to our
previous survey paper [7]. Also related are anonymous publishing systems such
as Freenet [8] or Free Haven [11], which hide the original author of a file rather
than the up loader, and the Tor middleware [10]. Bhargava and Palamidessi
[4] model the dinning cryptographers protocol in the probabilistic pi-calculus
[15]. They propose a new notion of anonymity that makes a careful distinc-
tion between non-deterministic and probabilistic actions. In other work Deng,
Palamidessi and Pang [9] define “weak probabilistic anonymity” and use PRISM
[19] to show that it holds for the dinning cryptographers protocol. Chatzikoko-
lakis and Palamidessi further explore the definition of “probable innocence” [6].
Garcia et al. [13] develop a formal framework for proving anonymity based on
epistemic logic, Schnider and Sidiropoulos [24] use CSP to check anonymity and
Kremer and Ryan analyse a voting protocol in the applied pi-calculus [18]. Their
approaches do not take into account the probability of observing actions.

In the next section we describe the MUTE system, then in Section 3 we
review the pi-calculus. We carry out our analysis of MUTE in Section 4, with
one sub-section on the pi-calculus model and another showing why we cannot
get a bi-simulation. We discuss how this break down in bi-simulation can be
turned into a real attack on a MUTE network in Section 5, and how MUTE can
be fixed in Section 6. Finally, Section 7 concludes and suggests further work.
Readers who are only interested in the attack and the fix may skip ahead to
sections 5 and 6.

2 The Ants Protocol and the MUTE System

The MUTE system [23] is based on the Ant Colony Optimisation algorithm
(Ants Protocol) [12, 14]. This protocol is in turn based on the way ants use
pheromones when looking for food [3] and was not originally designed to keep
users anonymous, rather it was designed for networks in which nodes do not
have fixed positions or well-known identities. In this setting, each node has a
pseudo identity that can be used to send messages to a node but does not give
any information about its true identity (i.e., the node’s IP address).

In order to search the network, a node broadcasts a search message with
its own pseudo ID, a unique message identifier and a time-to-live counter. The
search message is sent to all of the node’s neighbours, which in turn send the
message to all of their neighbours until the time-to-live counter runs out. Upon
receiving a message a node first checks the message identity and discards any
repeated messages, it then records the connection on which the message was
received and the pseudo ID of the sender, in this way each node dynamically
builds and maintains a routing table for all the pseudo identities it sees. To send
a message to a particular pseudo ID a node sends a message with the pseudo ID
as a “to ID”. If a node has that pseudo ID in its routing table, it forwards the
message along the most common connection. Otherwise, it forwards the message
to all its neighbours. Some random rerouting can be added to allow nodes to
discover new best routes, in case the network architecture has changed.

MUTE implements the Ants protocol with a non-deterministic time-to-live
counter, as well as a host of other features designed to make the system efficient
and user friendly. The kinds of attacker that MUTE defends against are nodes
in the system that wish to link the IP address of their direct neighbours with a
pseudo ID. Attackers may make as many connections to a node as they like but
we do not let an attacker monitor the whole network or even all of the connections
going into or out of a node; without the possibility of an unmonitored connection
to an honest node the target loses all anonymity. A complete summary of a piece
of software of the size of MUTE is beyond the scope of this paper, we highlight a
few key features and refer the interested reader to the MUTE developer web-page
for more information.

MUTE uses a complex three phase “Utility Counter” to control how far a
search message travels. The first phase is equivalent to the searcher picking a
time-to-live value from a long-tail distribution, which is then counted down to
zero before moving to the second phase. The aim of this phase is to stop an
attacker from being able to tell if their neighbour originated a search message.
Once this first phase is finished the counter moves to the second phase, which
is a standard time-to-live counter that counts up to 35 in increments of 7. This
means that the message is forwarded for a further 5 hops. The values of 35 and
7 are used to be compatible with an older version of MUTE that used a more
fine-grained, but less anonymous, version of the counter.

The third phase of the utility counter is a non-deterministic forwarding. Each
node decides when it starts up how many nodes it is going to forward phase-
3 messages to. A node will drop a phase-3 message with probability 3/4, and

Process P, Q ::= 0 The stopped process
| rec a(x); P Input of x on channel a
| send a(b) Output of b on channel a
| new a; P New name declaration
| P | Q P running in parallel with Q
| repeat{ P } An infinite number of P s
| if (condition) then { P } Run P , if a = b
|

∏
j∈{a1,...,an} P (x) P (x) in parallel for all j

Fig. 1. The Pi-calculus Syntax

forward the message to n neighbours with probability 1/(3×2n). The aim of this
last phase is to quickly end the search and to stop an attacker from being able
to send a search message that it knows will not be forwarded to any other nodes.
There must always be a chance of forwarding more copies of a search message to
stop a number of attackers that are connected to the same node knowing when
they have received all of the forwarded copies of a search.

All of the probabilistic choices made by a MUTE node (such as the value of
the phase-1 counter or how many nodes phase-3 messages are forwarded to) are
fixed when the node first starts up. This protects against statistical attacks by
ensuring that the repetition of the same action yields no new information to the
attacker.

MUTE’s routing table stores information for the last one hundred different
IDs it has seen. For each ID the routing table stores the last fifty connections
over which a message from this ID was received. When either list is full the oldest
entries are dropped. When a node needs to forward a message to a particular
ID it randomly chooses one of the stored connections for that ID and forwards
the message along that connection. If the node does not have an entry for the
destination ID it sends the message to all of its neighbours.

3 The Pi-calculus

We use the asynchronous pi-calculus [16, 20] to build a formal model of the
MUTE system. The pi-calculus can be thought of as a small concurrent lan-
guage that is simple enough to be formally analysed while still expressive enough
to capture the key elements of a system. The syntax of our version of the pi-
calculus is shown in Figure 1. It is an asynchronous, late version of the calculus
that includes conditional branching. We also include a product term that effec-
tively defines families of processes. To express some of the details of the MUTE
protocol, we extend the set of names to include tuples and natural numbers.
Process terms are identified by a structural congruence “≡”. The semantics of
the calculus is shown in Figure 2. The labels on the arrows indicate the kind
of reduction that is taking place, either an input a, an output ā or an internal
action τ . Output actions may carry new name declarations along with them,

send a(b)
ā〈b〉→ 0 rec a(x); P

a(x)→ P

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

P
ν~c.ā〈b〉→ P ′

new c′; P
νc′,~c.ā〈b〉→ P ′

P
a(x)→ P ′ Q

ν~c.ā〈b〉→ Q′

P | Q
τ→ new ~c; (P [b/x] | Q)

~c ∩ fn(P) = ∅

P
α→ P ′

P | Q
α→ P ′ | Q

bn(α) ∩ fn(P) = ∅

P
α→ P ′

new a.P
α→ new a.P ′ a /∈ α

Fig. 2. Pi-calculus Semantics

indicated by the ν label. The side conditions on some of the rules ensure than
the new name declaration does not accidentally capture other names. We further
define α⇒ to be any number of internal (τ) actions followed by an α action and
then another sequence of internal actions.

The first piece of syntax stop represents a stopped process, all processes
must end with this term although we usually do not write it. The send a(b)
operation broadcasts the name b over channel a. The receive operation receives
a name and substitutes it into the continuing process. The new operation cre-
ates a new communication channel. The repeat operator can perform recur-
sion by spinning off an arbitrary number of copies of a process, !P ≡ P | !P .
The bar | represents two processes running in parallel and the match opera-
tion, if (condition) then {P}, executes P if and only if the condition holds.
The product term defines the parallel composition of any number of processes∏

j∈{a1,...,an} P (x) ≡ P [a1/x] | P [a2/x] | . . . | P [an/x]. We will drop the set of
names from this operator when their meaning is clear.

The semantic rules of the calculus allow two processes to communicate:

send a(b) | rec a(x);P τ→ P [b/x]

Here, the name b has been sent over the channel a and substituted for x in
P . The τ on top of the arrow indicates that a communication has taken place.
bn is defined as the names that are bound by a new operator and fn are the
free names, i.e., those that are not bound. The side conditions on the reduction
rules stop names from becoming accidentally bound by a new operator. One of
the most important aspects of the pi-calculus is that new names are both new
and unguessable, for instance the process new a; rec a(x);P can never receive
a communication on the channel a, no matter what the surrounding processes
might try. For more information on the pi-calculus we refer the reader to one of
the many survey papers [21].

4 Analysing MUTE in the Pi-calculus

Our formal model of MUTE comes in three pieces. We make a process that
models an innocent node “I”, which forwards messages and searches for files
and another process that models a guilty node “G”, which will also return a
response to a request. A third kind of process “E”, models the rest of the en-
vironment. These processes are parameterised on the communication channels
that run between them. We can bind these channels with a new operator to
hide them from the attacker or leave them free to allow the attacker access. The
parameters also specify the probabilistic choices a node makes when it starts
up, such as the value of the phase-1 counter. The behaviour of a parameterised
node is non-deterministic, as oppose to probabilistic, i.e., the choice of which
actions happen is due to chance occurrences that cannot be meaningfully assign
a probability inside our framework, such as how often a user will search for a
file.

Weak bi-simulation is often used as an equality relation between processes.
Two processes are weakly bi-similar if every visible action of one process can
be matched by the other process and the resulting processes are also weakly
bi-similar:

Definition 1 (Weakly bi-similar). Processes P and Q are weakly bi-similar
if there exists an equivalence relation ≈ such that P ≈ Q and for all P1 and Q1

such that P1 ≈ Q1, if P1
α⇒ P ′

1 then:

– if α is an output or an internal action there exists a process Q′
1 such that

Q1
α⇒ Q′

1 and P ′
1 ≈ Q′

1.
– if α is an input action, i.e., α = a(x), then for all names b, there exists a

process Q′
1 such that Q1

α⇒ Q′
1 and P ′

1[b/x] ≈ Q′
1[b/x].

A pi-calculus process cannot distinguish between two other pi-calculus pro-
cesses that are weakly bi-similar. So for any possible pi-calculus process Attacker
that models an attempt to break the anonymity of a node: if the two processes
A is Guilty and A is Innocent are bi-similar then we know that the processes
A is Guilty | Attacker and A is Innocent | Attacker are also bi-similar, so no
pi-calculus attacker can discern if A is guilty.

We would like to show that a network in which the attacker can connect to a
guilty node on channels c1, . . . , ci and to the environment on channels c′1, . . . , c

′
j :

new ci+1, .., ck; (G(c1, .., ci, ci+1, .., ck) | E(ci+1, .., ck, c′′1 , . . . , c′j))

is weakly bi-similar to a network in which an attacker can connect to an innocent
node and a slightly different environment:

new ci+1, .., ck; (I(c1, .., ci, ci+1, .., ck) | E′(ci+1, .., ck, c′′1 , . . . , c′j))

where c1, . . . , ci are the private communication channels between the nodes and
the environment, and ci+1, .., ck are channels that the attacker can use to com-
municate with I and G. In the next sub-section we give the process terms for
I,G and E and in the following sub-section we show that there can be no bi-
simulation between guilty and innocent networks.

4.1 A Model of MUTE in the Pi-calculus

We make a number of abstractions while building our model; the aim of these
simplifications is to make the model small enough to check without losing its
overall correctness. These abstractions include the following:

(1) No actual files are transferred and no search keywords are used. Instead
we use a “search” message that is responded to with a “reply” message.

(2) We parameterise our nodes on a fixed time-to-live value for the phase-1
counter. This value is reduced by one each hop. The counter goes to phase-2
when this value reaches zero.

(3) We simplify the nodes routing table: when forwarding a message to a
particular ID the node picks any connection over which it has previously received
a message from that ID. The pi-calculus does not include a concept of random
access memory, so to represent storing an ID and a connection we send a pair
(id, connection) on a particular name. When we want to read from memory we
receive on the same channel and test the id, if it matches the ID of the node we
are looking for we use the connection otherwise we look for another packet. This
can be thought of as using a buffered communication channel to store values.

(4) We assume that a node always knows the “to ID” of any reply message
it sees. A more realistic model would have to test for this and send the reply
message to all of the node’s neighbours if the “to ID” is unknown.

(5) We do not use message IDs and do not drop repeated messages. We
also allow a node to send a message back over the connection on which it was
received, returning the message to its sender. This does not give an attacker any
extra power because there is no way to limit an attacker to just one connection.

(6) In closely packed networks a node may send a request over one connection
and receive the same request back over another. To simplify our model we assume
that these kinds of communications do not happen.

Point 6 removes details that may reveal some information to the attacker,
exactly what will depend on the arrangement of the network, we leave a fuller
investigation as further work.

The results of these simplifications are that the channels pass messages with
four fields:

Message format = (kind of message, the “to ID”, the “from ID”,
phase of the counter, value of the counter)

A message kind may be a “search” or a “reply” to a search. The from and to
IDs are the pseudo IDs of the originator of the message and its final destination
(not the IDs of the nodes that the message is being past between on the current
hop). Search messages are broadcast to the network and so do not use the “to
ID” field, in this case we will write “none” as the “to ID”.

The processes are parameterised on the communication channels they will
use to talk to the environment and the attacker. To stop a node communicating
with itself we represent communication streams as a pair cj = 〈ci

j , c
o
j〉. The node

will use the ci
j channel for input and the co

j channel for output. In order not to
clutter our process terms, we will write “new cj” for “new ci

j , c
o
j”.

I(connections, forward, ttl)
≡ new my id, memory; IID(my id, connections, forward , ttl, memory)

IID(my id, 〈 〈ci
1, c

o
1〉, .., 〈ci

n, co
n〉 〉, 〈 〈ci

for 1, c
o
for 1〉, .., 〈ci

for p, co
for p〉 〉, ttl, memory)

≡ Πj repeat { rec ci
j(kind, to id, from id , phase, counter);

send memory(from id, co
i)

| if (kind = search) then { FORWARDMESSAGE }
| if (kind = reply) then { REPLY }

}
| repeat { Πl send co

l (search, none, my id, 1, ttl)}

FORWARDMESSAGE ≡
if (phase = 1 and counter > 1) then

{Πk send co
k(kind, to id, from id , 1, counter − 1)}

| if (phase = 1 and counter = 1) then
{Πk send co

k(kind, to id, from id , 2, 0)}
| if (phase = 2 and counter < 35) then

{Πk send co
k(kind, to id, from id , 2, counter + 7)}

| if (phase = 2 and counter ≥ 35) then
{Πk send co

for k(search, to id, from id , 3, 0)}
| if (phase = 3) then {Πk send co

for k(search, to id, from id , 3, 0)} }

REPLY ≡ if (to id = my id) then {stop}
| if (to id 6= my id) then
{ new loop; send loop;

repeat{ rec loop; rec memory(x, channel); (send memory(x, channel)
| if (x 6= to id) then {send loop}
| if (x= to id) then

{send channel(kind, to id, from id , phase, counter)}) }

Fig. 3. An Innocent Node

The process term for the innocent node is given in Figure 3. The node’s
parameters are defined as follows:

I(a tuple of connections to other nodes,
a tuple of the connections on which the node will forward phase 3 messages,
the initial time-to-live value used for phase-1 when generating a search message)

We define I in terms of another process IID that also states the node’s ID
and the channel name it uses for memory. The IID process listens repeatedly,
for a message on any of its input channels. When it receives a message it stores
the message’s “from ID” and the channel on which the message was received by
sending them on the memory channel. The node then tests the message’s kind
to see if it is a search message or a reply message. If the message is a search
message the utility counter is tested and altered, and the message is forwarded.

G(connections, forward, ttl)
≡ new my id, memory; GID(my id, connections, forward , ttl, memory)

GID(my id, 〈 〈ci
1, c

o
1〉, .., 〈ci

n, co
n〉 〉, 〈ci

for , c
o
for 〉, ttl, memory) ≡

Πj repeat{rec ci
j(kind, to id, from id , phase, counter);

send memory(from id , co
i)

| if(kind = search) then
{new loop; send loop;
repeat{rec loop; rec memory(x, channel); (send memory(x, channel)

| if (x 6= from id) then {send loop}
| if (x = from id) then
{send channel(reply, from id , my id, none, none)}) }

| FORWARDMESSAGE }
| if (kind = reply) then { REPLY } }

| repeat { Πl send co
l (search, none, my id, 1, ttl)}

Fig. 4. A Guilty Node

If the message received by the node is a reply message then the node checks
to see if the message is addressed to itself. If it is then this thread of the process
stops and the node continues to listen on its connections (this test and stop
has no functionality and is included for clarity). If the reply is addressed to
another node then the process looks up the “to ID” in its memory and forwards
the message. The last line of the IID process allows the node to send search
messages to any of its neighbours.

The process term for a guilty node is given in Figure 4. This process works
in the same way as the innocent node except that, after receiving any search
message, the node looks up the “from ID” and returns a reply.

Figure 5 contains a pi-calculus model of the environment which has one
connection to a node. The process E(c, n, j) models an environment that com-
municates over the channel c and includes n individual nodes that may search
for files, out of which j nodes will reply to requests for files. The parameters of
the EID process include the IDs of its nodes and meta-functions that map each
ID to a utility counter value. There is not a true structural equivalence between
E and EID because the meta-functions are not really part of the calculus, but
rather a device that allows us to define a family of processes.

In Figure 6 we expand this to the environment with m connections by over-
loading E and EID. This process uses a tuple of values for each of the single
values in the one connection environment. For i, ranging from 1 to m, the process
uses the channel ci over which ni individual nodes may search for files. These
nodes use the IDs id i1, . . . , id ini

and the first ji of these will reply to requests
for files.

E(c, n, j) ∼= new id1, . . . , idn; EID(c, 〈id1, . . . , idn〉, j, fp, fc)

EID(〈ci, co〉,〈id1, . . . , idn〉, j, fp, fc)
≡ repeat{rec ci(kind, to id, from id , phase, counter);

if(kind = search) then
{Πi∈{1,...,j} send channel(reply, from id , idj , 0, 0); } }

| Πi repeat { send co(search, none, idi, fp(idj), fc(idj)) }

Fig. 5. The Environment with one connection

EID(〈〈ci
1, c

o
1〉, . . . , 〈ci

m, co
m〉〉, 〈n1, . . . , nm〉, 〈j1, . . . , jm〉)

∼=new (id 11, . . . , id 1n1), (id 21, . . . , id 2n2), . . . , (id m1, . . . , id mnm);
EID(〈〈ci

1, c
o
1〉, . . . , 〈ci

m, co
m〉〉, 〈j1, . . . , jm〉,

〈〈id 11, . . . , id 1n1〉, 〈id 21, . . . , id 2n2〉, . . . , 〈id m1, . . . , id mnm〉〉,
〈fp

1 , . . . , fp
m〉, 〈fc

1 , . . . , fc
m〉)

EID(. . .) ≡ Πk∈{1,..,m}repeat{rec ci
k(kind, to id, from id , phase, counter);

ifi(knd = search) then
{Πi∈{1,..,jk} send channel(reply, from id , id kj , 0, 0); } }

| Πk∈{1,..,m}Πi∈{1,..,nk}repeat{send co
k(search, none, id ki, f

p
m(id ki), f

c
m(id ki))}

Fig. 6. The Environment with m connections

4.2 No Bi-Simulations Between Guilty and Innocent Nodes

The environment should provide “cover” for guilty nodes. As an example, con-
sider the case in which a guilty node has one connection to the attacker and one
connection to the environment:

new c2;G(〈c1, c2〉, 〈c2〉,m) | E(c2, n, j)

The only communication channel in this process that is not new is the c1 channel,
therefore this is the only channel that the attacker may use to communicate with
the process. The guilty node will reply to a search request sent on c1, and so
expose its own ID. The environment will do likewise and expose its IDs along
with their utility counter values:

new c2;G(〈c1, c2〉, 〈c2〉,m) | E(c2, n, j)
∼= new c2;G(〈c1, c2〉, 〈c2〉,m) | new id1, . . . , idn;E(c2, 〈id1, . . . , idn〉, j, fp, fc)
~α⇒ new c2,mem;GID(g id, 〈c1, c2〉, 〈c2〉,m, mem) | send mem(id1, c2) . . .

| send mem(idj , c2) | new idj+1, . . . , idn;E(c2, 〈id1, . . . , idn〉, j, fp, fc))

where the ~α actions are the search input from the attacker followed by some
permutation of the responses on channel c1.

The anonymity should come from the fact that the same observations may
come from an innocent node and an environment that provides one more response
with a phase-1 utility counter set to one higher than m. We can verify that this
innocent network can perform the same ~α actions as the guilty network:

new c2; I(〈c1, c2〉, 〈c2〉,m) | E(c2, n, j + 1)
∼= new c2; I(〈c1, c2〉, 〈c2〉,m) | new id1, . . . , idn;E(c2, 〈id1, . . . , idn〉, (j + 1), f ′

p, f
′
c)

~α⇒ new c2,mem, i id; IID(i id, 〈c1, c2〉, 〈c2〉,m, mem) | send mem(id1, c2) . . .
| send mem(idj+1, c2) | new idj+2, . . . , idn;E(c2, 〈id1, . . . , idn〉, j + 1, f ′

p, f
′
c))

where f ′
p(idj+1 = 1), f ′

c(idn+1) = m + 1. So, in order to be able to show some
level of anonymity, we would like to show the following bi-simulation:

new c2;G(〈c1, c2〉, 〈c2〉,m) | E(c2, n, j)
≈ new c2; I(〈c1, c2〉, 〈c2〉,m) | E(c2, n, j + 1)

where j < n, i.e., there are both innocent and guilty nodes in the environment.
Upon examination we find that relations of this kind do not hold. Let us

start with PG and PI as follows:

PG ≡ new c2; (G(〈c1, c2〉, 〈c2〉,m) | E(c2, n, j))
PI ≡ new c2; (I(〈c1, c2〉, 〈c2〉,m) | E(c2, n, j + 1))

We follow a fixed method to check the bi-similarity of two processes. We
enumerate all of the inputs, outputs and internal actions that a process can
perform and then look for matching actions in the other process. We then test
each pair of resulting processes for bi-similarity. Most possible actions will not
produce interesting reactions, for instance any node will discard messages that
do not use “search” or “reply” as its kind. Ultimately the processes may loop
around to processes that we already consider bi-similar, in which case we proceed
to check the other processes. If we find processes that do not match we backtrack
and see if there were any other possible matchings of actions that would have
worked. If processes are to complicated to effectively check by hand they can be
checked with automated tools such as the Mobility Workbench [27] or Level 0/1
[26].

One of the first actions that we must check for PG and PI is the input of a
well-formed search message. In response both processes return equivalent reply
messages. In the PG network these include the reply from the guilty note. The
innocent network can match these outputs with replies from the environment.
At this point the IDs are public and the node has recorded the IDs from the
environment:

PG
~α1⇒ new c2,mem; (GID(n id, 〈c1, c2〉, 〈c2〉,m, mem) | send mem(id1, c2) . . .

| send mem, (idj , c2) | E(c2, 〈id1, . . . , idn〉, j, f ′
p, f

′
c))

PI
~α1⇒ new c2,mem; (IID(n id, 〈c1, c2〉, 〈c2〉,m, mem) | send mem(id1, c2) . . .

| send mem(idj+1, c2) | E(c2, 〈id1, . . . , idn〉, j + 1, f ′
p, f

′
c))

The free names that are available to the attacker in PG now include id1, . . . , idj

and n id and in PI they include id1, . . . , idj , idj+1. As these are all new names
the attacker cannot distinguish between these two sets . . . yet.

We must now check to see if the two processes behave in the same way when
they receive inputs that use the names that have just been outputted. For the
guilty network one message that must be checked is send c1(search, none, n id, 1, 7),
i.e., a search message with the guilty node’s ID as the “from ID”. As n id is just
one of a set of free names this action can be matched by the innocent network
with a similar message using an ID from the environment, idk say, resulting in
the processes:

PG
~α3⇒ new c2,mem;GID(n id, 〈c1, c2〉, 〈c2〉,m, mem)

| send mem(n id, c1) | send mem(id1, c2) | . . .
| send mem(idj , c2) | E(c2, 〈id1, .., idn〉, j, f ′

p, f
′
c))

PI
~α3⇒ new c2,mem; IID(n id, 〈c1, c2〉, 〈c2〉,m, mem)

| send mem(idk, c1) | send mem(id1, c2) | . . .
| send mem(idj+1, c2) | E(c2, 〈id1, .., idn〉, j + 1, f ′

p, f
′
c))

For PG and PI to be bi-similar these processes must be bi-similar. Both of
them can indeed perform the same inputs and outputs. Including the input of a
reply message address to the ID that has just been used for the search message,
i.e., send c1(reply, n id, aid, 0, 0) for PG and send c1(reply, idk, aid, 0, 0) for PI

The innocent node looks up the ID, it may find the c1 connection and return the
request on c1 as output. The guilty node, on the other hand, recognises its own
ID and accepts the message. It cannot perform the same output as the innocent
node and therefore PG and PI cannot be bi-similar.

If we examine the actions that lead to these un-similar processes we can see
that the attacker tried to “steal” one of the IDs that it has seen as a “from ID”
of a reply to its message. The attacker can then use this process to test IDs to
see which one belongs to its neighbour because, out of all the IDs in all the reply
messages that an attacker may see, the guilty node’s ID is the only one that
cannot be stolen.

5 Description of the Attack on MUTE

The difference between the processes in the pi-calculus model was that the inno-
cent node might be able to perform an action, whereas the guilty node could not.
To build a real attack out of this we must force the innocent node to perform
the action so the guilty node will stand out. The idea behind the real attack is
that the attacker can “steal” an ID by sending fake messages using the target
ID as the “from ID”. If it sends enough messages then its neighbouring nodes
will forward messages addressed to the target ID over their connection with the
attacker. One exception to this is if the ID the attacker is trying to steal belongs
to the neighbour, as the neighbour will never forward messages addressed to
itself. Therefore the attacker can use this method of stealing IDs to test any IDs
it sees, if the ID cannot be stolen then the ID belongs to the neighbour.

We saw in Section 2 that MUTE looks at the last fifty messages when deciding
where to route a message. Only IDs that are seen on search messages with phase-
1 counters are possibilities for the neighbours ID and only search messages with

phase-3 counters can be dropped. Therefore, if the attacker sees some messages
with a phase-1 counter and others reach the neighbour with a phase-3 counter
and are dropped, we know that the messages that are dropped must be slower and
so they will not affect the routing table. This means that if the attacker can send
fifty messages with the target ID to its neighbour, without any messages with
that ID coming from the neighbour, then the attacker will receive any messages
send to that ID via the target node, unless the ID belongs to the target node.
There is still a small possibility that the neighbour is receiving or forwarding a
file from the real owner of the ID, in which case the large number of messages
that the neighbour is receiving might mean the attacker fails to steal an address
that does not belong to the target node. To avoid this possibility the attack can
be repeated at regular intervals.

The attack on MUTE would run as follows:

1. The attacker makes two connections to the target node, monitors these con-
nections and selects the “from ID” with the highest time-to-live counter.

2. The attacker forms new search messages using the selected ID as the “from
ID” and repeatedly sends them to the neighbour until it has sent fifty mes-
sages without receiving any messages from the ID it is trying to steal.

3. The attacker then sends a reply message addressed to the selected ID along
its other connection with the target node. If the message is not sent back to
the attacker then it is likely that the target ID belongs to the neighbour.

4. These steps can be repeated at regular intervals to discount the possibility
that the neighbour is receiving or forwarding a file from the target ID.

5. If the attacker receives the message back then the selected ID does not belong
to the target node, so the attacker must select another ID and start again.

6. If the neighbour still does not bounce the message back to the attacker then,
with a high degree of probability, the attacker has found the neighbour’s ID
and the attacker can then find out what files the neighbour is offering.

6 Fixing MUTE

This attack is made possible by the Ants Protocol’s adaptive routing system and
the fact that nodes will never forward messages addressed to themselves. Key
to the success of the attack is the attacker’s ability to corrupt its neighbour’s
routing table in a known way. This in turn is only possible because the attacker
can fake messages with another node’s ID.

We can solve this problem by stopping the attacker from being able to forge
messages. This can be done by having all nodes start by generating an authenti-
cation and signature key, from any suitably secure public key encryption scheme.
The nodes can then use the authentication keys as their IDs. This authentication
key would be used in exactly the same way as the node’s ID. However, each node
would also sign the message ID. When any node receives a message, it can check
the signed message ID using the “from ID”. As the attacker cannot correctly
sign the message ID it can no longer forge messages. Such a scheme also benefits

from a fair degree of backward compatibility. Older nodes need not be aware
that the ID is also an authentication key. The checking is also optional; nodes
may choose to only check messages it they spot suspicious activity.

The level of popularity enjoyed by any system that offers anonymity to the
user will be partly based on the level of trust potential users place in these
claims. To maintain a level of trust in the MUTE system it is important to
implement this fix before the flaw is widely known. With this in mind we sent
an early copy of this paper to the lead programmer on the MUTE project.
They were happy to accept the results of the formal analysis and agreed to
implement the fix suggested above. To remain compatible with earlier versions
of the client the pseudo IDs could not be longer than 160-bits, which is too
short for a RSA public key. We briefly considered using an elliptic curve digital
signature algorithm that would allow for public keys of this length, but the use
of less well known cryptographic algorithms proved unpopular.

The final solution was to use a SHA1 hash of a 1024-bit RSA authentica-
tion key as the pseudo ID and include the authentication key in the message
header, along with the signed message ID. This would require changing the mes-
sage header from random a “From ID” and “Message ID” to a 1024-bit RSA
authentication key, the SHA1 hash of that key as the “From ID”, along with
the signed message ID. It was also found that nodes would only store message
IDs for a few hours so to avoid replay attacks a counter based timestamp was
included in the signature of the message. This solutions was added to the 0.5
release of MUTE; the C++ source code for the implementation is available at
http://mute-net.cvs.sourceforge.net2 .

7 Conclusion and Further Work

We have modelled the MUTE system in the pi-calculus and we have shown that
it is not possible to have a bi-simulation between every network in which the
attacker connects to a guilty node and a network in which the attacker connects
to an innocent node. The point at which this bi-simulation fails leads to an attack
against the MUTE system. The attack, which involves “stealing” the name of
another node, is a serious problem that compromises the anonymity of any node
that neighbours an attacker. We suggested a fix for this attack based on using
an authentication key as the node’s pseudo ID.

Our general methodology was to try to show that the environment could
provide cover for any guilty node. In particular that for all parameters pg, pe

there exists some other parameters pi, p
′
e such that:

Guilty node(pg) | Environment (pe) ≈ Innocent node (pi) | Environment (p′e)

We hope that this method can be used to prove the anonymity of other
systems in which the environment provides cover for guilty nodes.
2 In the first five months after its release the patched version of MUTE was downloaded

over 75,000 times

As further work we hope to be able to prove that some form of the Ants
protocol does provide anonymity. If we do not allow inputs to our model that
use IDs that have been observed as outputs we can show for every guilty network
there is a bi-similar innocent network. However a true correctness result will
require a more realistic model of the environment. We would expect a node not
to be anonymous when connected to some small, pathological environments. So
it would be necessary to find out what kind of environments provide adequate
cover for a node.

Acknowledgement

We would like to thank the Comète Team at the École Polytechnique for many
useful discussions about anonymity, and especially Jun Pang for comments on
an early draft of this paper. We would also like to thank Jason Rohrer, who is
responsible for creating MUTE and who implemented the fix described in this
paper.

References

1. Ants p2p, http://antsp2p.sourceforge.net/, 2003.

2. Andres Aristizabal, Hugo Lopez, Camilo Rueda, and Frank D. Valencia. Formally
reasoning about security issues in p2p protocols: A case study. In Third Taiwanese-
French Conference on Information Technology, 2005.

3. R. Beckers, J. L. Deneubourg, and S. Goss. Trails and u-turns in the selection of the
shortest path by the ant lasius niger. Journal of Theoretical Biology, 159:397–415,
1992.

4. Mohit Bhargava and Catuscia Palamidessi. Probabilistic anonymity. In CONCUR,
LNCS 3653, pages 171–185, 2005.

5. Steve Bono, Christopher A, Soghoian, and Fabian Monrose. Mantis: A high-
performance, anonymity preserving, p2p network, 2004. Johns Hopkins University
Information Security Institute Technical Report TR-2004-01-B-ISI-JHU.

6. Konstantinos Chatzikokolakis and Catuscia Palamidessi. Probable innocence re-
visited. In Formal Aspects in Security and Trust, LNCS 3866, pages 142–157,
2005.

7. Tom Chothia and Konstantinos Chatzikokolakis. A survey of anonymous peer-to-
peer file-sharing. In EUC Workshops, LNCS, pages 744–755, 2005.

8. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A
distributed anonymous information storage and retrieval system. LNCS, 2009:46+,
2001.

9. Y. Deng, C. Palamidessi, and J. Pang. Weak probabilistic anonymity. In Proc. 3rd
International Workshop on Security Issues in Concurrency (SecCo’05), 2005.

10. R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th USENIX Security Symposium, 2004.

11. Roger Dingledine, Michael J. Freedman, and David Molnar. The free haven project:
Distributed anonymous storage service. In Proceedings of the Workshop on Design
Issues in Anonymity and Unobservability, July 2000.

12. Marco Dorigo and Gianni Di Caro. The ant colony optimization meta-heuristic. In
David Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in Optimization,
pages 11–32. McGraw-Hill, London, 1999.

13. Flavio D. Garcia, Ichiro Hasuo, Wolter Pieters, and Peter van Rossum. Prov-
able anonymity. In Proceedings of the 3rd ACM Workshop on Formal Methods in
Security Engineering (FMSE05), 2005.

14. Mesut Gunes, Udo Sorges, and Imed Bouazzi. Ara – the ant-colony based routing
algorithm for manets. In Proceedings of the International Workshop on Ad Hoc
Networking (IWAHN 2002), Vancouver, August 2002.

15. Oltea Mihaela Herescu and Catuscia Palamidessi. Probabilistic asynchronous pi-
calculus. In Foundations of Software Science and Computation Structure, pages
146–160, 2000.

16. Kohei Honda and Mario Tokoro. An object calculus for asynchronous communi-
cation. In European Conference on Object-Oriented Programming, LNCS, pages
133–147, 1991.

17. Byung Ryong Kim, Ki Chang Kim, and Yoo Sung Kim. Securing anonymity in p2p
network. In sOc-EUSAI ’05: Proceedings of the joint conference on Smart objects
and ambient intelligence. ACM Press, 2005.

18. Steve Kremer and Mark D. Ryan. Analysis of an electronic voting protocol in the
applied pi-calculus. In Proceedings of the 14th European Symposium on Program-
ming (ESOP’05), LNCS, pages 186–200, 2005.

19. M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model
checker. In Proc. 12th International Conference on Modelling Techniques and Tools
for Computer Performance Evaluation (TOOLS’02), volume LNCS 2324, pages
200–204, 2002.

20. Robin Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Speci-
fication, volume 94 of Computer and Systems Sciences, pages 203–246. 1993.

21. Joachim Parrow. Handbook of Process Algebra, chapter An Introduction to the
pi-calculus. Elsevier, 2001.

22. M. Reiter and A. Rubin. Crowds: anonymity for web transactions. ACM Trans-
actions on Information and System Security, 1(1):66–92, 1998.

23. Jason Rohrer. Mute technical details. http://mute-
net.sourceforge.net/technicalDetails.shtml, 2006.

24. Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In ESORICS,
pages 198–218, 1996.

25. Emin Gun Sirer, Sharad Goel, Mark Robson, and Doan Engin. Eluding carnivores:
File sharing with strong anonymity, 2004. Cornell Univ. Tech. Rep.

26. Alwen Tiu. Level 0/1 prover: A tutorial. Avilable online at:
http://www.lix.polytechnique.fr/t̃iu/lincproject/, 2004.

27. Björn Victor and Faron Moller. The Mobility Workbench — a tool for the π-
calculus. In CAV’94: Computer Aided Verification, LNCS 818, pages 428–440,
1994.

28. Waste, http://waste.sourceforge.net/, 2003.

