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Abstract

The use of RFID tags in personal items, such as pass-
ports, may make it possible to track a person’s move-
ments. Even RFID protocols that encrypt their identity
may leak enough information to let an attacker trace
a tag. In this paper we define strong and weak forms
of untraceablility, and illustrate these definitions with
a simple example. We formally define these concepts
in the applied pi-calculus which in some cases makes it
possible to automatically check if an RFID tag running
a particular protocol is untraceable.

1 Introduction

Radio Frequency IDentification (RFID) systems con-
sist of tags, readers and a database, as depicted in Fig-
ure 1. As the tag is small enough to be implanted into
almost any item, and the data on the tag can be read
wirelessly, RFID technology has proven useful in many
situations including stock control, payment and iden-
tification systems. However, as RFID tags cannot be
switched off and will answer any request without asking
for the agreement of their bearer they have raised new
security concerns. For instance, can a person’s move-
ments be traced using the RFID tags implanted in the
items they are carrying? As early RFID tags responded
to any signal broadcast to them and replied with a
unique identifier (as depicted in Figure 2), Benetton’s
proposal to place RFID tags in clothes caused a public
outcry for precisely this reason [5]. Similar traceability
concern have also affected the New York area E-Zpass
system [9].

There has been a lot of work on checking the se-
curity and authenticity properties of RFID protocols
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but there has been relatively little work on checking if
an attacker can trace a particular tag. The protocol
sketched in Figure 2 is clearly insecure and traceable.
Suppose now that the tag encrypts its ID with a key
shared between the tag and the reader; the ID would
be be kept secure. However, if the encryption is de-
terministic the message is the same each time and the
attacker can trace the tag by simply looking for this
bit string.

Traceability is a threat that is particularly relevant
to RFID protocols because RFID tags are the only
technology that people regularly carry on their per-
son and cannot turn off. Such security threats have led



to the development of RFID tags that encrypt their
communication and authenticate the readers, such as
the protocols used in the e-passport [11] and on transit
system payment cards. However, even these protocols
often turn out to be broken (such as the Mifare classic
tag used for the London Underground [13]) or allow
the user to be tracked (such as the Nike+iPod sports
kit [17]). This shows the need for methods of check-
ing the correctness of RFID protocols before they are
implemented.

The aim of our work is to aid in the checking of RFID
protocols for traceability attacks. We identify two lev-
els of untraceability. Strong untraceability holds if an
attacker cannot tell the difference between an RFID
system in which all tags are different and a system
in which some tags appear twice. Weak untraceabil-
ity holds if an attacker cannot identify two particular
runs of a protocol as having involved the same tag.
Intuitively, an attacker learns nothing from a strongly
untraceable system, whereas the attacker in a weakly
untraceable system may learn some information about
the tags but still cannot trace one particular tag.

We formalise our notions of strong and weak un-
traceability by defining them using observational equiv-
alence in the applied pi-calculus [2]. This makes the
definitions absolutely precise and in some cases allows
a user to automatically check that a protocol is un-
traceable using the tool ProVerif [6].

In the next section we briefly describe the applied
pi-calculus. We describe how RFID systems can be
modelled in Section 3. Our main definitions of strong
and weak untraceability are defined in Section 4. Fi-
nally we conclude and discuss further work in Section
5.

Related work While a number of papers discuss the
privacy problems raised by RFID techonologies (see for
example [14, 15, 20]), very few precisely define what
they mean by untraceability. Avoine et al. in [4] were
the firsts to give a formal definition of untraceability.
Some other attempts to formalize untraceability then
followed [3, 8, 16, 19]. All this work however is carried
out in the computational model, which is poorly sup-
ported by automatic tools. The advantage of our work
is that it is carried out in the symbolic setting which
is supported, as already mentioned, by the ProVerif
tool. These two settings being very different, it is dif-
ficult at this stage to compare our work with the ones
mentioned before.

In the symbolic world, Deursen et al. [18] are, to
the best of our knowledge, the only other people to de-
fine untraceability. They propose a formal definition of
untraceability in a particular trace model. Their defini-

tion is similar to our definition of weak untraceability.
However, the model they use to defined this property
does not lend itself to automation, which is the main
advantage of working in the symbolic setting instead
of the computational.

2. The applied pi-calculus

The applied pi-calculus [2] is a language for de-
scribing concurrent processes and their interactions.
It is based on the pi-calculus, but adds equations
which make it possible to model a range of crypto-
graphic primitives. Properties of processes described
in the applied pi-calculus can be proved by employing
manual techniques [2], or by automated tools such as
ProVerif [6]. As well as reachability properties which
are typical of model checking tools, ProVerif can in
some cases prove that processes are observationally
equivalent [7]. This capability is important for privacy-
type properties such as those we study here. The ap-
plied pi-calculus has been used to study a variety of
security protocols, such as those for private authenti-
cation [12] and for key establishment [1].

To describe processes in the applied pi-calculus, one
starts with a set of names (which are used to name
communication channels or other constants), a set of
variables, and a signature Y which consists of the func-
tion symbols which will be used to define terms. In
the case of security protocols, typical function symbols
will include pbk for constructing the public key pbk(k)
associated to the secret key k, and aenc for asymmet-
ric encryption, which takes a plaintext and a public
key and returns the corresponding ciphertext, and adec
for asymmetric decryption, taking a ciphertext and the
corresponding private key and returning the plaintext.
One can also describe the equations which hold on
terms constructed from the signature. For example in
the signature

Y = {pair, w1, ma, pbk, aenc, adec}

pbk, aenc, and adec are as described above, and pair
is the function symbol that denotes the concatenation
operation. 7 and 7o are respectively the projections
on the first and second component of a pair. It is usual
to consider for ¥ the following equational theory

1 (pair(z, y)) @
ma(pair(z,y)) = y
adec(aenc(z, pbk(k)), k) x

Terms are defined as names, variables, and function
symbols applied to other terms. Plain processes are
built up in a similar way to processes in the pi calculus,



except that messages can contain terms (rather than
just names). In the grammar described below, M and
N are terms, m is a name, x a variable and u is a
metavariable, standing either for a name or a variable.

PQ,R, =
0 null process
P|Q parallel composition
\P replication
vn.P name restriction
if M = N then P else Q  conditional
in(u, z).P message input
out(u, N).P message output

Example Consider the following process System:

System = Tag | Reader
Reader = out(c, Welcome). in(c, x)
Tag = wvid. (in(e,y).if (y = Welcome)

then out(c, id))

The first component sends a Welcome message to the
second, and waits for the second to identify itself by
sending its id. Accordingly the second component
waits for a Welcome message and identifies itself.

The operational semantics of processes in the ap-
plied pi-calculus is defined by structural rules defining
two relations: structural equivalence, written = and in-
ternal reduction, written —. Structural equivalence is
the smallest equivalence relation on extended processes
that is closed under a-conversion on names and vari-
ables, by application of evaluation contexts —an evalu-
ation context is an extended process with a hole instead
of some extended process— and satisfying some further
basic structural rules such as A | 0 = A, associativ-
ity and commutativity of |, etc. Internal reduction —
is the smallest relation on extended processes closed
under structural equivalence and application of eval-
uation contexts such that out(a,z).P | in(a,z).Q —
P | @, and for any ground terms M and N, whenever
M #g N we have

if M = M then Pelse @ — P
if M = N then Pelse @ — @

Applied pi-calculus processes evolve by executing the
actions mentioned above. We write A — A’ to mean
that process A evolves to A’ by one step, and A —* A’
for finitely many steps.

Example Consider process P described in the
previous example. We have

System — in(e,z) | vid. (if (Welcome = Welcome)
then out(c, id)).

This internal reduction expresses a communication
on the channel ¢ between the two components of the
process P. In the reminder of the process y is replaced
by Welcome.

Many properties of security protocols (including the
properties we study in this paper) are formalised in
terms of observational equivalence (/) between two
processes. Intuitively, processes which are observation-
ally equivalent cannot be distinguished by an outside
observer, no matter what sort of test he makes. This
is formalised by saying that the processes are indistin-
guishable under any context, i.e., no matter in what
environment they are executed.

Example Consider the following three processes P,
P2, and Pgl

P, = vk. out(c, aenc(a, pbk(k)))
P, = vk. out(c, aenc(pair(a,b), pbk(k)))
P; = vk. out(c, pair(aenc(a, pbk(k)), b))

Since an outside observer doesn’t know the decryp-
tion key k, he cannot ditsinguish if it is the con-
stant a or the pair pair(a,b) which is encrypted in
P and P, respectively. We thus have that P, =~
P;. On the other hand, P, % Pj, since the test
e | in(c,z). if my(x) = b then out(c,” success”) distin-
guishes the two processes, i.e., the observer can tell the
processes apart by testing if the second component of
the output message is b.

Advantages and limitations of the applied pi-
calculus An advantage of the applied pi-calculus is
that we can combine powerful (hand) proof techniques
from the applied pi-calculus with automated proofs
provided by Blanchet’s ProVerif tool. Moreover, the
verification is not restricted to a bounded number of
sessions and we do not need to explicitly define the
adversary. We only give the equational theory describ-
ing the intruder. Generally, the intruder has access to
any message sent on public, i.e., unrestricted channels.
These public channels model the network. Note that
all channels are anonymous in the applied pi-calculus.
Unless the identity or something like the IP address is
specified explicitly in the conveyed message, the origin
of a message is unknown. This abstraction of a real pro-
tocol is very appealing, as it avoids the need to model
explicitly an anonymiser service. However, we stress
that a real implementation needs to treat anonymous
channels with care. Another advantage of the applied
pi-calculus is its ability to model sophisticated crypto-
graphic primitives by means of the equational theory.
One limitation concerns modelling non-determinism or



probabilities, e.g. MIX-nets [10]. In the applied pi
calculus, all non-determinism is controlled by the at-
tacker. If MIX-nets are modelled non-deterministically,
this gives the attacker unreasonably strong powers.

3. Modelling protocols

In this work, we do not consider all the processes
of the applied pi-calculus. We thus first need to define
which processes correspond to the RFID protocols' we
have considered.

Definition 1 An RFID protocol P is a closed plain
process such that

P = vii. (DB | IR |T)

where
T = vm. init. !'main

for some processes init and main. Moreover, we
consider P such that all channels occurring in it are
ground, and private channels are never sent on any
channel.

As we mentioned in the introduction, a system P is
formed of readers (R), tag (T'), and a database (DB).
Intuitively, T is the process modelling one tag, and
having T" under a replication in P corresponds to con-
sidering a system with an unbounded number of tag.
Each tag, initialises itself (this includes registering to
the database DB and is modelled by init in T') and
then may execute itself an unbounded number of times.
Thus main models one session of the tag’s protocol. R
corresponds to one session of the reader’s protocol, and
DB to the database. We consider an unbounded num-
ber of readers, thus R is under a replication in P.

Example Let’s consider the following RFID identifi-
cation protocol

reader tag
(R) (T)

Welcome

aenc(pair(T,N),pbk(R))

The reader continuously emits a welcome message and
expects from a tag to answer with its identity T paired

IRFID protocols only differ from usual protocols like the
Needham-Schroeder protocol in the number of roles. We
presently restrict ourselves to RFID protocols because traceabil-
ity is particularly relevant to them. Although our definitions
could be extended to k-party protocols for any k.

with a fresh nonce N, the whole asymmetrically en-
crypted with the reader’s public key pbk(R). More-
over, the reader may (but not necessarily) send some
message (lets say 0) to the database if it has seen two
particular tags more then three times each. Although
the reader’s behaviour is somehow odd and the protocol
doesn’t satisfy important properties like authentication
(it is subject to replay attacks), it is still (as we will see
later) an interesting candidate for us. It will allow us
to separate weak from strong untraceability. We thus
start by modelling it in the applied pi-calculus. For
this, we consider the signature X and the equational
theory given in the first example of Section 2

DB = 0

R = out(c, Welcome). in(c,z1). ....in(c,x6
if (m1(adec(zy, k)) = m (adec(z;, k))

).
T
and {h,4,j,¢,m,n} ={1,...,6})
then out(db, 0)
T = wvid. l(vn. in(c, x).
if (x =Welcome)
then out(c, aenc(pair(id, n), pbk(k))))
P = vk (DB|IR|!T)
Here, init = 0 and main = vn. in(c,z). if (zr =
Welcome) then out(c, aenc(pair(id,n), pbk(k))). In or-

der to reduce the notational clutter we have introduced
the following notation:

if Cy and Cy then P if €} then if Cj then P.
Moreover, the condition {h,i,j,¢,m,n} = {1,...,6}

expresses that we consider all the permutations for the
values of h, i, 7, £, m, and n.

4 Formalising untraceability
4.1 Strong untraceability

Untraceability is sometimes defined as ensuring that
an intruder tampering with the system thinks that each
tag session is initiated by a different tag.

Definition 2 Let P be an RFID protocol. Let
P = va. (DB|'R|!T")

where
T = vim. init. main

= i (adec(z;, k))
and 7 (adec(xy, k)) = m (adec(xm, k)) = w1 (adec(xy, k))



P preserves strong untraceability for tags if
P ~P

The intuitive idea behind this definition is as follows:
each session of P should look to the intruder as if it was
initiated by a different tag. In other words, an ideal
version of the protocol, w.r.t. untraceability, would
allow tags to execute themselves at most once. The
intruder should then not be able to tell the difference
between the protocol P and the ideal version of P’.

4.2. Weak untraceability

Let P be an RFID protocol. Informally, weak un-
traceability ensures that a tag can execute its protocol
multiple times without an intruder being able to link
these executions together (ISO 15408 definition). To
formally define this in the applied pi calculus, we first
need to define tagging the outputs of a process with a
term.

Definition 3 Let P be a process such that all
channels that appear in P are ground and let Cp,p be
the set of public channels appearing in P. Tagging
the public outputs of P with IV results in the process

P = tag(P, N, Cpyp) with

tag(0, N, C) = 0
tag(P1|P2,N,C') =
ag(P1,N,C) | tag(Pe, N,C)
tag(!P, N,C) = !tag(PhN7 )
tag(vn. P1,N,C) = wvn. tag(P1,N,C)
(
(

o+

ag |n( ) P1,N ) = in(e,z). tag(Py, N, C)
tag(ou ). P,,N,C)
out (¢, pair(M, N)). tag(Py, N, C)
{ out(c, M). tag(P1,N,C) otherwise
tag(if My = My then Py else P, N,C) =
if My = M, then tag(Py, N,C) else tag(Psy, N, C)

ifceC

Example If we consider the process System given
as an example in Section 2. Tagging its public outputs
with the constant n results in the following process

System” = Tag" | Reader "
Tag" = out(c, pair( Welcome,n)). in(c, x)
Reader” = wvid. (in(c,y).if (y = Welcome)

then out(c, pair(id,n)))

Definition 4 Let P be an RFID protocol. From P
we build the two following processes

Q = via.(DB|R|\T|T,|Ty)

where T7 and T» are the processes modelling two tag
such that

Ty = wvm. init. (\main | main” | main™)
T, = vm.init. (\main | main™)
and
Q = vn. (DB|'R|!T|T]|T}

where T and T4 are the processes modelling two tags
such that

T, = v init. ('main | main” | main™)
T, = wim. init. (‘main | main™)

We consider sy, so, and s3 to be three distinct session
identifiers that do not occur in P (i.e. three distinct
public constants not appearing in P). P preserves weak
untraceability for tags if

Q~ Q

The intuitive idea behind this definition is as follows:
if a protocol satisfies untraceability, then an intruder
shouldn’t be able to tell the difference when two ses-
sions s; and sy are executed by the same tag in the
process P; sessions s; and ss are initiated by the tag
T1), or by two different tags (in the process Py sessions
s1 and sy are imitated by the tags T7 and T» respec-
tively).

4.3. Strong untraceability C Weak untraceability?

Let’s consider again our toy protocol. This protocol
satisfies weak but not strong untraceability. Intuitively,
this is due to the fact that when an outside observer
sees a message output on channel db, he knows that
there are two tags that have executed themselves three
times each and thus that it is not the case that each tag
executes itself at most once. He can hence distinguish
the actual protocol from its ideal version, violating the
definition of strong untraceability. On the other hand
this information doesn’t allow him to really link two
sessions of the same tag.

More formally, if we consider the evaluation context
C[e] = e, then in P the reader may emit a sound (i.e.
a message on channel beep) according to the protocol.
However, in the ideal version P’ this will never hap-
pen since tags execute their protocol only once. Nev-
ertheless, we formally proved using ProVerif that this
protocol satisfies weak untraceability.

5. Conclusion

The main contribution of the paper is two defini-
tions of untraceability in the applied pi-calculus. These



definitions can be used to automatically verify (with
ProVerif) RFID protocols. We also proved that these
two definitions are not equivalent by building an RFID
protocol that is weakly untraceable but not strongly
untraceable. Moreover, we proved that this protocol
is weakly untraceable using the ProVerif tool, demon-
strating that this definition can be suitable for auto-
matic verification.

The next step for us, is to test our definitions on
existing protocols, academic ones as well as real ones.
We are planing amongst others to verify w.r.t. untrace-
ability the protocols used in the e-passport. As much
as possible, we will do so using the ProVerif tool, in
order to conclude to the suitability of our definitions
to automation.

In this paper, we conjecture that strong untraceabil-
ity implies weak untraceability. We would now want to
prove this formally. We will then look at untraceabil-
ity of corrupted tags (namely backward and foraward
untraceability). Moreover, untraceability is closely re-
lated to anonymity. In particular, one would expect
that untraceability implies anonymity. This is some-
thing we would like to look at in the future.
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