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Abstract

This manuscript presents new results on statistically estimating min-entropy leakage, which
gives a confidence interval of the leakage.

1 Introduction

Information theory and statistics are employed to quantify the amounts of information leakage from
systems. An analyst can statistically estimate information leakage of secret values in a system by
observing only some (and not all) trial runs of the system. For example, Chatzikokolakis et al. [1]
provide a method that analyses trial runs of systems and estimates the mutual information of the
secrets from the observable outputs when the secrets and observables take discrete values. The method
includes a rigorous evaluation of possible errors of the estimated leakage, and Chothia et al. [3] applies
this to quantify information leakage from Java programs.

This manuscript deals with the statistical estimation of another kind of leakage measure, called
min-entropy leakage. This measure is used to quantify the vulnerability of secrets to single-attempt
guessing attacks [7]. We present a technique for statistically estimating the min-entropy leakage of a
system, given independent and identically distributed trial runs of the system. In particular we calcu-
late a confidence interval of the estimated leakage value, i.e., an interval that contains the true min-
entropy leakage value with some confidence, for example, more than 95%. We also present another
way of calculating a confidence interval based on previous work and compare the two approaches.

We implemented these new estimation algorithms in our tool leakiEst [2], which supports the
estimation of several kinds of leakage measures from datasets that are generated from trial runs of a
system. A wide range of experiments using the tool shows that the confidence interval calculated by
our algorithm is indeed effective in evaluating the possible errors of estimated min-entropy leakage
values, while the estimation of min-entropy leakage requires many more trial runs than that of mutual
information.

2 Preliminaries

A (discrete) channel is a triple (X,Y, PY |X) consisting of a finite setX of (discrete) secret input values,
a finite setY of (discrete) observable output values and a #X×#Ymatrix PY |X . Each element PY |X[x, y]
of the channel matrix is the conditional probability of having an observable y ∈ Y given a secret x ∈ X
in a system. Given a secret input distribution PX on X, the joint probability of having a secret x ∈ X
and an observable y ∈ Y is defined by PXY [x, y] = PX[x]PY |X[x, y].
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When the specification of a system is unknown or too large to examine all possible runs of the
system, it is impossible or very difficult for us to precisely calculate the channel matrix or joint distri-
bution for the system. Thus, instead of trying to obtain the exact channel matrix or joint distribution,
we statistically estimate them from some trial runs of the system.

Let us consider L trial runs of the system that are independent and identically distributed. Let
ŝ(x, y) be the frequency of trial runs with a secret x ∈ X and an observable y ∈ Y. Then the empirical
probability of having a secret x and an observable y is defined by PL

XY [x, y] = ŝ(x,y)
L . Also, let û(x) be

the frequency of a secret x ∈ X; i.e., û(x) =
∑

y∈Y ŝ(x, y). Then the empirical probability of having a
secret x is defined by PL

X[x] = û(x)
L .

Next we present the definition of min-entropy leakage [7], which measures the vulnerability of
secrets to single-attempt guessing attacks.

• The a priori vulnerability is defined as a min-entropy: V(X) = max
x∈X

PX[x].

• The a posteriori vulnerability is defined as a conditional min-entropy: V(X|Y) =
∑
y∈Y

max
x∈X

PXY [x, y].

• The min-entropy leakage is defined by L(X; Y) = − log2 V(X) + log2 V(X|Y).

We finally recall the definition of binomial distributions. A binomial (or Bernoulli) trial is an
experiment with two possible outcomes “success” and “failure” (e.g. coin-flipping). For a positive
integer L and a probability p, the binomial distribution B(L, p) is the discrete probability distribution
of the number of successes in a sequence of L independent binomial trials, each being a success with
the probability p. The distribution B(L, p) has a mean of Lp and a variance of Lp(1 − p).

3 Estimating Min-Entropy Leakage Using χ2 Tests

In this section we present a novel method for estimating the min-entropy leakage from trial runs of
the system. The estimation gives a point estimate of a leakage and its (more than) 95% confidence
interval. Note that this new approach can be applied to the systems where secrets and observables
have discrete values. We assume that the analyst does not know the secret input distribution PX in
advance and so estimate it as well from trial runs of the system.

We obtain the following point estimates from the empirical secret distribution PL
X and the empirical

joint distribution PL
XY .

• The point estimate of the a priori vulnerability VL(X) = max
x∈X

PL
X[x].

• The point estimate of the a posteriori vulnerability VL(X|Y) =
∑
y∈Y

max
x∈X

PL
XY [x, y].

• The point estimate of the min-entropy leakage L̂(X; Y) = − log2 VL(X) + log2 VL(X|Y).

Given L independent and identically distributed trial runs, the frequency ŝ(x, y) of having a secret
x ∈ X and an observable y ∈ Y follows the binomial distribution B(L, PXY [x, y]), where PXY [x, y] is
the true joint probability of a secret x and an observable y occurring. On the other hand, the binomial
distributions B(L, PXY [x, y]) and B(L, PXY [x′, y′]) for any x, x′ ∈ X with x , x′ and y, y′ ∈ Y with
y , y′ are correlated, as their observed frequencies must sum to the total number of trial runs; i.e.,∑

x∈X,y∈Y ŝ(x, y) = L. Therefore the estimation of a confidence interval using the exact distribution
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takes too long time. Instead, we perform Pearson’s χ2 tests [6, 4] for a large number L of trial runs in
order to estimate a confidence interval of the min-entropy leakage.

The estimation of a confidence interval is based on the fact that, with a high probability, each
observed frequency ŝ(x, y) of having a secret x ∈ X and an observable y ∈ Y is close to the “expected
frequency” PXY [x, y]L, where PXY [x, y] is the true probability we want to estimate. By applying χ2

tests, we evaluate the probability that the observed frequencies ŝ(x, y) come from the joint probabilities
PXY [x, y]. Given the observed frequencies ŝ(x, y) and the expected frequencies PXY [x, y]L, the χ2 test
statistics is defined by:

χ2 =
∑

x∈X, y∈Y

(ŝ(x, y) − PXY [x, y]L)2

PXY [x, y]L
.

Since PXY [x, y] is not a conditional probability but a joint probability, it is regarded as a one-way table
and this test statistics follows the χ2 distribution with (#X · #Y − 1) degrees of freedom. Note that we
can obtain the value χ2

(0.05,k) from the χ2 table. We denote by χ2
(0.05,k) the test statistics with upper tail

area 0.05 and k degrees of freedom.
The goal of our new method is to obtain a (more than) 95% confidence interval of min-entropy

leakage L(X; Y) between the secret and observable distributions X, Y . It suffice to calculate the
95% confidence intervals of the min-entropy H∞(X) = − log2 maxx∈X PX[x] and the conditional min-
entropy H∞(X; Y) = − log2

∑
y∈Ymaxx∈X PXY [x, y] respectively.

We first present a way of obtaining the confidence interval of the conditional min-entropy H∞(X; Y)
as follows. Given L independent and identically distributed trial runs of the system, we obtain the ob-
served frequencies ŝ. Then we construct expected frequencies smax that give the largest a posteriori
vulnerability among all expected frequencies that satisfy:

χ2
(0.05,#X#Y−1) =

∑
x∈X, y∈Y

(ŝ(x, y) − smax(x, y))2

smax(x, y)
.

More specifically, smax is constructed by increasing only the maximum expected frequencies max
x∈X,y∈Y

smax(x, y) and by decreasing others, while keeping the total number of frequencies as L; i.e.,
∑

x∈X,y∈Y
smax(x, y) = L. From smax we calculate the empirical distribution Ppost

max[x, y] = smax(x,y)
L . Next, we

construct expected frequencies smin that give the smallest a posteriori vulnerability. Keeping the total
number of frequencies as L, we repeat to decrease the current maximum expected frequency and
increase small frequencies until we obtain

χ2
(0.05,#X#Y−1) =

∑
x∈X, y∈Y

(ŝ(x, y) − smin(x, y))2

smin(x, y)
.

Then we calculate the corresponding distribution Ppost
min by Ppost

min [x, y] = smin(x,y)
L . From Ppost

max and Ppost
min

we obtain the following confidence interval of the conditional min-entropy:

Lemma 3.1 The lower bound Hmin
∞ (X; Y) and upper bound Hmax

∞ (X; Y) for the 95% confidence inter-
val of the conditional min-entropy H∞(X; Y) are respectively given by:

Hmin
∞ (X; Y) = − log2

∑
y∈Y

max
x∈X

Ppost
max[x, y],

Hmax
∞ (X; Y) = − log2

∑
y∈Y

max
x∈X

Ppost
min [x, y].
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Next, we compute the confidence interval of the min-entropy H∞(X). Given the observed fre-
quencies û, we construct expected frequencies umax that give the largest a priori vulnerability such
that

χ2
(0.05,#X−1) =

∑
x∈X

(û(x) − umax(x))2

umax(x)
.

We calculate the empirical distribution Pprior
max [x] = umax(x)

L . Similarly, we construct expected frequen-
cies umin giving the smallest a priori vulnerability, and calculate the corresponding distribution Pprior

min
by Pprior

min [x, y] = smin(x,y)
L . Then the 95% confidence interval of the min-entropy is defined by the

following.

Lemma 3.2 The lower bound Hmin
∞ (X) and upper bound Hmax

∞ (X) for the 95% confidence interval of
the conditional min-entropy H∞(X) are respectively given by:

Hmin
∞ (X) = − log2 max

x∈X
Pprior

max (x)

Hmax
∞ (X) = − log2 max

x∈X
Pprior

min (x).

By Lemmas 3.1 and 3.2 we obtain a more than 95% confidence interval of the min-entropy leak-
age:

Theorem 1 The lower bound Lmin(X; Y) and upper bound Lmax(X; Y) for a more than 95% confi-
dence interval of the min-entropy leakage X(X; Y) are defined respectively:

Lmin(X; Y) = Hmin
∞ (X) − Hmax

∞ (X; Y)
Lmax(X; Y) = Hmax

∞ (X) − Hmin
∞ (X; Y).

Note that our estimation of min-entropy leakage requires a large number of trial runs (usually
many more than that required to estimate mutual information) to ensure that no more than 20% of the
non-zero expected frequencies are below 5, which is a prerequisite for χ2 tests.

4 Another Approach with Looser Bounds

This section presents another way of calculating a confidence interval for the min-entropy leakage.
Note that this approach can be applied to the systems where secrets and observables have discrete
values.

4.1 Useful Lemmas

The confidence interval for min-entropy leakage is calculated using two propositions in previous work.
The following proposition is found as Proposition 1 in [8]:

Proposition 1 Let PZ be a probability distribution over a set Z of values. Let PL
Z be the empirical

probability distribution over Z obtained by observing L trial runs drawn from the distribution PZ .
Then for any ϵ1 > 0,

Pr
[ ∣∣∣∣∣max

z∈Z
PZ[z] −max

z∈Z
PL

Z[z]
∣∣∣∣∣ > ϵ1 ] ≤ 2 exp

−Lϵ21
2

 .
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The following proposition is found as Equation (2.3) in [5], which is derived from the Bernstein
inequality:

Proposition 2 Let PZ be a probability distribution over a set Z of values. Let PL
Z be the empirical

probability distribution over Z obtained by observing L trial runs drawn from the distribution PZ .
Then for any z ∈ Z and any ϵ2 > 0,

Pr
[ ∣∣∣ PZ[z] − PL

Z[z]
∣∣∣ > ϵ2 ] ≤ 2 exp

− 6Lϵ22
3 + 4ϵ2

 .
4.2 Confidence Interval for Estimated Min-Entropy Leakage (when the input distri-

bution is known)

We give another way of calculating the confidence interval for the min-entropy leakage. We first
consider the case where the analyst knows the secret input distribution PX . This calculation is faster
than the approach in the previous section while giving looser bounds.

Let Ly be the number of trial runs with an observable y ∈ Y, and L be the total number of trial
runs; i.e., L =

∑
y∈Y Ly. Let PX|Y [x, y] be the conditional probability of having a secret x ∈ X given an

observable y ∈ Y; i.e., PX|Y [x, y] = PXY [x,y]
PY [y] . Similarly we define the empirical conditional probability

PLy

X|Y [x, y]. Using the two propositions we obtain the following theorem on a confidence interval of the
min-entropy leakage L(X; Y).

Theorem 2 Let ϵ1, ϵ2 > 0, and

Llw = − log V(X) + log
(∑

y∈Ymax
(
0, (maxx∈X PLy

X|Y [x, y] − ϵ1)(PL
Y [y] − ϵ2)

))
,

Lup = − log V(X) + log
(∑

y∈Y
(
maxx∈X PLy

X|Y [x, y] + ϵ1
) (

PL
Y [y] + ϵ2

))
,

C(y) =
(
1 − 2 exp

(
− Lyϵ

2
1

2

)) (
1 − 2 exp

(
− 6Lϵ22

3+4ϵ2

))
.

Then
Pr
[
Llw ≤ L(X; Y) ≤ Lup

]
>
∏
y∈Y

C(y).

Proof: Let y ∈ Y. By Proposition 1,

Pr
[

max
x∈X

PLy

X|Y [x, y] − ϵ1 ≤ max
x∈X

PX|Y [x, y] ≤ max
x∈X

PLy

X|Y [x, y] + ϵ1
]
> 1 − 2 exp

−Lyϵ
2
1

2

 .
By Proposition 2,

Pr
[

PL
Y [y] − ϵ2 ≤ PY [y] ≤ PL

Y [y] + ϵ2
]
> 1 − 2 exp

− 6Lϵ22
3 + 4ϵ2

 .
Let C(y) =

(
1 − 2 exp

(
− Lyϵ

2
1

2

)) (
1 − 2 exp

(
− 6Lϵ22

3+4ϵ2

))
. By PXY [x, y] = PX|Y [x, y]PY [y],

Pr
[ (

max
x∈X

PLy

X|Y [x, y] − ϵ1
) (

PL
Y [y] − ϵ2

)
≤ max

x∈X
PXY [x, y] ≤

(
max
x∈X

PLy

X|Y [x, y] + ϵ1
) (

PL
Y [y] + ϵ2

) ]
> C(y).

Therefore
Pr
[
Llw ≤ L(X; Y) ≤ Lup

]
>
∏
y∈Y

C(y).
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□

We can indeed calculate the confidence interval using the above theorem. Given a confidence level
C0 (e.g. 0.975), we can numerically obtain ϵ1, ϵ2 > 0 that satisfies C0 =

∏
y∈YC(y).

4.3 Confidence Interval for Estimated Min-Entropy Leakage (when the input distri-
bution is also estimated)

Next we give a way of calculating the confidence interval for the min-entropy leakage L(X; Y) when
the analyst does not know the exact secret input distribution PX but can estimate it from trial runs of
the system.

Theorem 3 Let ϵ1, ϵ2, ϵ3 > 0, and

Llw = − log
(
maxx∈X PL

X[x] + ϵ3
)
+ log

(∑
y∈Ymax

(
0, (maxx∈X PLy

X|Y [x, y] − ϵ1)(PL
Y [y] − ϵ2)

))
,

Lup = − log
(
max(0,maxx∈X PL

X[x] − ϵ3)
)
+ log

(∑
y∈Y
(
maxx∈X PLy

X|Y [x, y] + ϵ1
) (

PL
Y [y] + ϵ2

))
,

C(y) =
(
1 − 2 exp

(
− Lyϵ

2
1

2

))
·
(
1 − 2 exp

(
− 6Lϵ22

3+4ϵ2

))
.

Then

Pr
[
Llw ≤ L(X; Y) ≤ Lup

]
>

1 − 2 exp

−Lϵ23
2

 ·∏
y∈Y

C(y).

Proof: By Proposition 1,

Pr
[

max
x∈X

PL
X[x] − ϵ3 ≤ max

x∈X
PX[x] ≤ max

x∈X
PL

X[x] + ϵ3
]
> 1 − 2 exp

−Lϵ23
2

 .
Let y ∈ Y. As shown in the proof for Theorem 2,

Pr
[ (

max
x∈X

PLy

X|Y [x, y] − ϵ1
) (

PL
Y [y] − ϵ2

)
≤ max

x∈X
PXY [x, y] ≤

(
max
x∈X

PLy

X|Y [x, y] + ϵ1
) (

PL
Y [y] + ϵ2

) ]
> C(y).

Therefore, by L(X; Y) = log


∑
y∈Y

max
x∈X

PXY [x, y]

max
x∈X

PX[x]

, we obtain

Pr
[
Llw ≤ L(X; Y) ≤ Lup

]
>

1 − 2 exp

−Lϵ23
2

 ·∏
y∈Y

C(y).

□

5 Evaluation of the Two Approaches

According to some experiments, both of the two estimation methods give confidence intervals that
contain the true leakage value with probabilities more than 95%. The estimation method using χ2

tests (in Section 3) gives much better bounds than the estimation method using the previous work (in
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Section 4). The estimation method based on the previous work give better bounds when the analyst
knows the secret distribution PX (in Section 4.2) than when he does not (in Section 4.3).

We will present experimental results to compare the two methods in a future version of this
manuscript or in a journal paper.

It is worth noting that our point estimates of min-entropy leakages contain positive errors, like the
point estimates of mutual information. Some experiments show that the point estimates are slightly
above the true leakage. Therefore, like the estimation of mutual information in [1], some value should
be subtracted from a point estimate of min-entropy leakage. Currently we are investigating a method
for correcting point estimates to remove their positive errors.

6 Min-Entropy Leakage in Non-Terminated Systems

This section presents the measurement of min-entropy leakage in non-terminated discrete systems.
Given a non-terminated discrete system, we define infinite sequences of secret input and observable
output random variables at discrete times. Let X(n) and Y (n) be the secret and observable random
variables at discrete time n in the system. For each integer n, we define the joint probability P(n)

XY [x, y]
of having a secret x ∈ X and an observable y ∈ Y at discrete time n in the system. Then we can define
the min-entropy leakage L(X(n); Y (n)) at time n.

6.1 Unbounded Number of Inputs

We first consider systems where there are unbounded number of secrets. We show that the min-entropy
leakage can decrease when the number of secrets increases.

Proposition 3 There exists a system such that L(X(n); Y (n)) > L(X(n+1); Y (n+1)) for some integer n.

Proof: Let us consider a system where the joint probability distributions P(1)
XY and P(2)

XY at times 1 and
2 are defined in Tables 1 and 2 respectively.

P(1)
XY Y (1) = 0 Y (1) = 1

X(1) = 0 0.3 0.2
X(1) = 1 0.2 0.3

Table 1: The joint probability distribu-
tion P(1)

XY at time 1

P(2)
XY Y (2) = 0 Y (2) = 1

X(2) = 0 0.3 0.2
X(2) = 10 0.15 0.1
X(2) = 11 0.05 0.2

Table 2: The joint probability distribu-
tion P(2)

XY at time 2

Then L(X(1); Y (1)) = − log max(0.3+ 0.2, 0.2+ 0.3)+ log(max(0.3, 0.2)+max(0.2, 0.3)) = log 0.6
0.5

andL(X(2); Y (2)) = − log max(0.3+0.2, 0.15+0.1, 0.05+0.2)+log(max(0.3, 0.15, 0.05)+max(0.2, 0.1,
02)) = log 0.5

0.5 . Therefore L(X(1); Y (1)) > L(X(2); Y (2)). □

By this proposition, L(X(n); Y (n)) can decrease when the number of secrets increases. Hence
the min-entropy leakage lim

n→∞
L(X(n); Y (n)) in non-terminated discrete systems may not exist. This is

different from the mutual information, which converges when n tends to infinity [3].
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6.2 Bounded Number of Inputs

Next we consider systems where there are bounded number of secrets.

Proposition 4 Consider a system where the number of secrets is fixed after time n0. ThenL(X(n); Y (n))
converges when n tends to infinity.

Proof: For any integer n, L(X(n); Y (n)) is bounded above: L(X(n); Y (n)) ≤ − log V(X(n)). For any
n ≥ n0, by X(n) = X(n0), L(X(n); Y (n)) is non-decreasing: L(X(n); Y (n)) ≤ L(X(n+1); Y (n+1)). Therefore
the min-entropy leakage L(X(n); Y (n)) converges when n tends to infinity. □
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