User Manual for leakiEst v.1.4 — a Tool for
Estimating Information Leakage

Tom Chothia, Yusuke Kawamoto, and Chris Novakovic

Abstract. leakiEst [CKN13] estimates the mutual information and min-
entropy leakage measures based on trial runs of a system. It operates
on both discrete and continuous data and performs statistical tests to
distinguish an insecure system with a very small information leak from
a secure one with no leakage.

1 Usage of the Tool

leakiEst v.1.4.n is available as a JAR file, leakiest-1.4.n.jar, from http:
//www.cs.bham.ac.uk/research/projects/infotools/leakiest/. It can be
invoked from the command line as follows:

> java -jar leakiest-1.4.n.jar <options>
It supports reading options from a configuration file:

> java -jar leakiest-1.4.n.jar -cfg configuration.txt

The help option -h displays the other command-line options supported by
the tool:

> java -jar leakiest-1.4.n.jar -h

2 Main Command-Line Options

We now explain the purpose of the main command line options. leakiEst can cal-
culate four types of leakage measure: mutual information (-mi), capacity (-cp),
min-entropy leakage (-me) and min-capacity (-mc).

-mi Calculate mutual information
-cp Calculate capacity

-me Calculate min-entropy leakage
-mc Calculate min-capacity

Note that the tool shows the confidence interval and clarifies whether or not
there is evidence of information leakage when calculating mutual information or
min-entropy leakage as the leakage measure.

Other options allow us to choose whether the input data is discrete or con-
tinuous (but only when calculating mutual information as the leakage measure):

http://www.cs.bham.ac.uk/research/projects/infotools/leakiest/
http://www.cs.bham.ac.uk/research/projects/infotools/leakiest/

-di Discrete data
-co Continuous data

These calculations are based on the methods presented in [CCGI0JCGI1IICKN14]

The tool supports two observation file formats (for storing data observed in a
system), a channel format (for describing a channel matrix), and Weka [HEH™09]’s
ARFF format [wek].

-o <file> Read input from an observation file

-02 <filel> <file2> Read input from two observation files, each
recording the observation of one attribute

-c <file> Read input from a channel file

-a <file> Read input from an ARFF file

The -v option is used to change the amount of information displayed, and
the -p option is used to print a channel matrix when discrete data is supplied
to the tool.

-v <level> Set the level of information shown (0 to 5)
e.g. -vi4
-p Print a channel matrix

The -hcomp option can be used to see the usage of compositional reason-
ing [KCP14], which has not been maintained since version 1.3.

3 Example 1: Dining Cryptographers Protocol

In our first example, we calculate the mutual information from the channel
matrix of a Dining Cryptographers protocol with three participants and biased
coins. To analyse the channel matrix, we edit the configuration file configDC.txt
to specify the location of the channel file dc3allbias4.txt and run the following
command:

> java -jar leakiest-1.4.n.jar -cfg configDC.txt

The tool gives the following output:

These observations lead to the following channel matrix, to 4 decimal places:

| AAD | ADA | DAA | DDD
userl | 0.1875 | 0.1875 | 0.4375 | 0.1875
user?2 | 0.1875 | 0.4375 | 0.1875 | 0.1875
user3 | 0.4375 | 0.1875 | 0.1875 | 0.1875
Mutual information: 0.1038 Calculated with the uniform input distribution.

The attacker learns 0.1038 bits, out of a possible
1.585 bits, about the input events.

This result shows that the mutual information calculated from the channel ma-
trix in the channel file and the uniform input distribution is 0.1038 bits.
We can also run this command without using the configuration file:

> java -jar leakiest-1.4.n.jar -mi -c data/dc3allbias4.txt -p -v 2

If we replace the option -mi with —cp, the tool calculates the capacity of the
channel as a leakage measure, as well as the input distribution that achieves the
capacity (i.e., that maximises the mutual information):

> java -jar leakiest-1.4.n.jar -cp -c data/dc3allbias4d.txt -v 2

Maximising input distribution estimated to be:
[useri: 0.3333, user2: 0.3333, user3: 0.3333]
Capacity calculated to within acceptable error, in 1 iterations.
Capacity: 0.1038
The attacker learns 0.1038 bits, out of a possible
1.585 bits, about the input events.

The tool uses the Blahut-Arimoto algorithm to calculate capacity. We can
specify the following two parameters used in the algorithm:

-e <level> Set the acceptable error level for Blahut-
Arimoto algorithm when computing capacity
e.g. —e 0.0000001

-i <number> Set the maximum number of iterations
e.g. —i 500

4 Example 2: Analysis of Encrypted Tor Traffic

To analyse encrypted Tor traffic data, we edit the configuration file configTor.txt
to specify the location of the ARFF file Tor.arff and run the following com-
mand.

> java —jar leakiest-1.4.n.jar -cfg configTor.txt

We use the following two options in the configuration file (or from the com-
mand line if not using a configuration file):

-high <numbers> specify indices of high value features
e.g. ~high 1,3,4
-low <numbers> specify indices of low value features

e.g. —-low 12,13 -low @all

We set ~high 75 and -low Qeach in configTor.txt, so that the 76th attribute
(“class”) in the ARFTF file is regarded as a secret (high attribute) and each of
the other attributes is regarded as an observation (low attribute).

We can also run this command without using the configuration file:

> java -jar leakiest-1.4.n -mi -di -a data/Tor.arff -high 69 -low Qeach -v O

The tool gives the following output that ranks the estimated mutual informa-
tion of each attribute (note that most of the output is omitted here for brevity):

Confidence Result Attributions Range (with ...

LEAK 1.431 for 6 payload_size_sent zero leakage < 0.589 [1.315, 1.547]
LEAK 1.220 for 8 number_spike_feature zero leakage < 0.431 [1.098, 1.341]
ZERO LEAK 0.245 for 34 payload_spike_6 zero leakage < 0.537 [0.109, 0.382]

This result shows that the attribute “payload_size_sent” leaks the most infor-
mation from the attribute “class” among all the attributes. “zero leakage <
0.589” shows that there is no evidence of leakage if the empirical value (without
bias correction) is less than 0.589 bits. On the column furthest on right-hand
side, the 95% confidence intervals for the mutual information are shown.

In the zero leakage test, a confidence interval for the mutual information of
a zero-leakage dataset obtained by destroying the link between the secrets and
observables by shuffling as described in Section IV of [CGII].

Note that the result 1.431 of discrete mutual information has been corrected
by removing its bias from the empirical value whereas the zero leakage test
compares the empirical value (without bias correction) with 0.589.

5 Example 3: Analysis of Malicious JavaScript

This dataset relates a binary value indicating the maliciousness of a particular
piece of JavaScript code (the secret) to characteristics that can be inferred by
observing or executing the code (the public outputs).

To analyse this dataset, we edit the configuration file configJavaScript.txt
to specify the location of the ARFF file JavaScriptFull.arff and run the
following command:

> java -jar leakiest-1.4.n.jar -cfg configJavaScript.txt

We set ~high 69 and -low Qeach in configJavaScript.txt, so that the 70th

attribute (“Intent”) in the ARFF file is regarded as a secret (high attribute)

and each of the other attributes is regarded as an observation (low attribute).
We can also run this command without using the configuration file:

> java -jar leakiest-1.4.n -mi -di -a data/JavaScriptFull.arff
-high 69 -low @each -v 0

Then we obtain the following result for the estimated mutual information:

Confidence Result

Attributions

Range (with...

LEAK 0.508 for 10 Ratio_O0f_Definitions_To_Uses zero leakage < 0.262 [0.484, 0.531]
LEAK 0.459 for 16 Method_Call zero leakage < 0.007 [0.424, 0.494]
ZERO LEAK 0.147 for 68 Script_Size zero leakage < 0.853 [0.137, 0.157]

6 Example 4: Analysis of Biometric Passport Protocol

To analyse the e-passport data studied in [CSI10], we edit the configuration file
configPassportGerman.txt to specify the locations of the two observation data
files for passport analysis, and run the following command:

> java -jar leakiest-1.4.n.jar -cfg configPassportGerman.txt
We can also run this command without using the configuration file:

> java -jar leakiest-1.4.n.jar -mi -co -v O
-02 data/timesGerman500Related.txt
data/timesGerman500Random. txt

The tool produces the following output for the German passport data:

Estimated mutual information: 0.9822 (out of possible 1.000 bits)
There is a leak.
Estimate is NOT below 0.0125(the 95 percentile for shuffled values).

This output shows that the estimated mutual information is 0.9822 bit, and that
there is evidence of information leakage; the mutual information for the passport
data is larger than the 95% confidence interval of mutual information in the case
of zero information leakage.

If we use the passport data obtained by adding padded time delays to the
original data, the tool produces the following output.

> java -jar leakiest-1.4.n.jar -cfg configPassportGermanFix.txt

Estimated mutual information: 0.1524 (out of possible 1.000 bits)
No leak detected.
Estimate is below 0.2744(the 95 percentile for shuffled values).

This means that there is no evidence of information leakage; the mutual informa-
tion for the passport data is smaller than the 95% confidence interval of mutual
information in the case of zero information leakage.

7 Example 5: Analysis of Dining Cryptographers
Protocol with TLS

This dataset is an observation file containing 10,000 trial runs of a variant of
the Dining Cryptographers protocol whereby the secret payer sends his credit
card number over an encrypted link before reporting the values of his coins; the
public outputs are the values of the coins as announced by each participant, in
the order in which they announce them. The possible source of leakage here is
that in a broken implementation, the payer may take longer to announce the
value of their coin, which may reveal the identity of the payer.

To analyse this dataset, we edit the configuration file configTLS.txt to
specify the location of the observation file DCprotocol with TLS_pc.txt and
run the following command:

> java —jar leakiest-1.4.n.jar -cfg configTLS.txt
We can also run this command without using the configuration file:

> java -jar leakiest-1.4.n -me -di -o data/DCprotocol_with_TLS_pc.txt

We are given the following estimated min-entropy leakage:

Estimated min-entropy leakage: 1.5555 (out of possible 1.579 bits)
Possible error: 0.019
Between 1.5365 and 1.5644 with 95.0% confidence

There is a leak.

In this result, a 95% confidence interval is calculated and used to decide whether
or not there is evidence of leakage.

References

CCG10. Konstantinos Chatzikokolakis, Tom Chothia, and Apratim Guha. Statistical
Measurement of Information Leakage. In Proc. TACAS, pages 390-404,
2010.

CGI11. Tom Chothia and Apratim Guha. A statistical test for information leaks
using continuous mutual information. In Proc. of CSF, pages 177-190, 2011.

CKN13. Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. A tool for estimat-
ing information leakage. In Proc. of CAV 2013, pages 690-695, 2013.

CKN14. Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. LeakWatch: Esti-
mating information leakage from java programs. In Proc. of ESORICS 2014
Part 11, pages 219-236, 2014.

CS10. Tom Chothia and Vitaliy Smirnov. A traceability attack against e-passports.
In FC10: Proceedings of the 14th Int. Conf. on Financial Cryptography and
Data Security 2010. LNCS, Springer-Verlag, 2010.

HFH'09. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and lan H. Witten. The WEKA Data Mining Software. SIGKDD
Ezxplorations, 11(1):10-18, 2009.

KCP14. Yusuke Kawamoto, Konstantinos Chatzikokolakis, and Catuscia
Palamidessi. Compositionality results for quantitative information
flow. In Proc. of QEST’14, pages 368-383, 2014.

wek. Weka — ARFF. http://weka.wikispaces.com/ARFF.

http://weka.wikispaces.com/ARFF

	User Manual for leakiEst v.1.4 – a Tool for Estimating Information Leakage

